Technical Specification EN/LZT 146 420 R4A October 2017

© Flex

D?6 (\$\$\$5 series Direct Converters
Input 36-72 V, Output up to 30 A / 125 W

Key Features

- Industry standard low profile Eighth-brick • 58.4 x 22.7 x 8.50 mm (2.30 x 0.894 x 0.339 in)
- High efficiency, typ. 93.3% at 5.0 Vout half load •
- 2250 Vdc input to output isolation •
- Meets isolation requirements equivalent to basic • insulation according to IEC/EN/UL 60950
- More than 1.6 million hours MTBF •

General Characteristics

- Output over voltage protection •
- Input under voltage shutdown •
- Over temperature protection •
- Monotonic startup •
- Output short-circuit protection •
- Remote sense ٠
- Remote control •
- Output voltage adjust function •
- Highly automated manufacturing ensures quality ٠
- ISO 9001/14001 certified supplier •

Design for Environment

Meets requirements in hightemperature lead-free soldering processes.

Contents

Ordering Information General Information Safety Specification Absolute Maximum Ratings	2 2 3 4
Electrical Specification	
3.3V, 30 A / 99 W	PKB 4910A5
5.0V, 25 A / 125 W	PKB 4111A9
EMC Specification	
EMC Specification Operating Information	
•	
Operating Information	
Operating Information Thermal Consideration	
Operating Information Thermal Consideration Connections Mechanical Information	
Operating Information Thermal Consideration Connections	

D?6 (\$\$\$5 series Direct Converters
Input 36-72 V, Output up to 30 A / 125 W

Ordering Information

Product program	Output
PKB 4910A	3.3 V, 30 A / 99 W
PKB 4111A	5.0 V, 25 A / 125 W

Product number and Packaging

PKB 4XXXXA n1n2n3						
N ₁	n ₂	n ₃				
0						
	0					
		0				
	N ₁	0 N1 N2				

Options	Description		
n ₁	PI SI	Through hole * Surface mount	
n ₂	Ρ	Negative * Positive	
n ₃	LA LB	5.30 mm * 3.69 mm 4.57 mm	
Evennele e through hele mou	-	active legis, chart nin	

Example a through-hole mounted, negative logic, short pin product would be PKB 4910A PILA.

* Standard variant (i.e. no option selected).

General Information

Reliability

The Mean Time Between Failure (MTBF) is calculated at full output power and an operating ambient temperature (T_A) of +40°C, which is a typical condition in Information and Communication Technology (ICT) equipment. Different methods could be used to calculate the predicted MTBF and failure rate which may give different results. Flex currently uses Telcordia SR332.

Predicted MTBF for the series is:

- 1.6 million hours according to Telcordia SR332, issue
 - 1, Black box technique.

Telcordia SR332 is a commonly used standard method intended for reliability calculations in ICT equipment. The parts count procedure used in this method was originally modelled on the methods from MIL-HDBK-217F, Reliability Predictions of Electronic Equipment. It assumes that no reliability data is available on the actual units and devices for which the predictions are to be made, i.e. all predictions are based on generic reliability parameters.

Compatibility with RoHS requirements

The products are compatible with the relevant clauses and requirements of the RoHS directive 2002/95/EC and have a maximum concentration value of 0.1% by weight in homogeneous materials for lead, mercury, hexavalent chromium, PBB and PBDE and of 0.01% by weight in

EN/LZT 146 420 R4A October 2017 © Flex

homogeneous materials for cadmium.

Exemptions in the RoHS directive utilized in Flex products include:

- Lead in high melting temperature type solder (used to solder the die in semiconductor packages)
- Lead in glass of electronics components and in electronic ceramic parts (e.g. fill material in chip resistors)
- Lead as an alloying element in copper alloy containing up to 4% lead by weight (used in connection pins made of Brass)

Quality Statement

The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000, 6σ (sigma), and SPC are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out and they are subjected to an ATE-based final test. Conservative design rules, design reviews and product qualifications, plus the high competence of an engaged work force, contribute to the high quality of our products.

Warranty

Warranty period and conditions are defined in Flex General Terms and Conditions of Sale.

Limitation of Liability

Flex does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person's health or life).

© Flex 2017

The information and specifications in this technical specification is believed to be correct at the time of publication. However, no liability is accepted for inaccuracies, printing errors or for any consequences thereof. Flex reserves the right to change the contents of this technical specification at any time without prior notice.

D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017		
Input 36-72 V, Output up to 30 A / 125 W	© Flex		

Safety Specification

General information

Flex DC/DC converters and DC/DC regulators are designed in accordance with safety standards IEC/EN/UL60950, *Safety of Information Technology Equipment*.

IEC/EN/UL60950 contains requirements to prevent injury or damage due to the following hazards:

- Electrical shock
- Energy hazards
- Fire
- Mechanical and heat hazards
- Radiation hazards
- Chemical hazards

On-board DC-DC converters and DC/DC regulators are defined as component power supplies. As components they cannot fully comply with the provisions of any Safety requirements without "Conditions of Acceptability". Clearance between conductors and between conductive parts of the component power supply and conductors on the board in the final product must meet the applicable Safety requirements. Certain conditions of acceptability apply for component power supplies with limited stand-off (see Mechanical Information for further information). It is the responsibility of the installer to ensure that the final product housing these components complies with the requirements of all applicable Safety standards and Directives for the final product.

Component power supplies for general use should comply with the requirements in IEC60950, EN60950 and UL60950 "Safety of information technology equipment". There are other more product related standards, e.g. IEEE802.3af "Ethernet LAN/MAN Data terminal equipment power", and ETS300132-2 "Power supply interface at the input to telecommunications equipment; part 2: DC", but all of these standards are based on IEC/EN/UL60950 with regards to safety.

Flex DC/DC converters and DC/DC regulators are UL60950 recognized and certified in accordance with EN60950.

The flammability rating for all construction parts of the products meets requirements for V-0 class material according to IEC 60695-11-10.

The products should be installed in the end-use equipment, in accordance with the requirements of the ultimate application. Normally the output of the DC/DC converter is considered as SELV (Safety Extra Low Voltage) and the input source must be isolated by minimum Double or Reinforced Insulation from the primary circuit (AC mains) in accordance with IEC/EN/UL60950.

Isolated DC/DC converters

It is recommended that a slow blow fuse with a rating twice the maximum input current per selected product be used at the input of each DC/DC converter. If an input filter is used in the circuit the fuse should be placed in front of the input filter.

In the rare event of a component problem in the input filter or in the DC/DC converter that imposes a short circuit on the input source, this fuse will provide the following functions:

- Isolate the faulty DC/DC converter from the input power source so as not to affect the operation of other parts of the system.
- Protect the distribution wiring from excessive current and power loss thus preventing hazardous overheating.

The galvanic isolation is verified in an electric strength test. The test voltage (V_{iso}) between input and output is 1500 Vdc or 2250 Vdc for 60 seconds (refer to product specification).

Leakage current is less than 1 µA at nominal input voltage.

24 V DC systems

The input voltage to the DC/DC converter is SELV (Safety Extra Low Voltage) and the output remains SELV under normal and abnormal operating conditions.

48 and 60 V DC systems

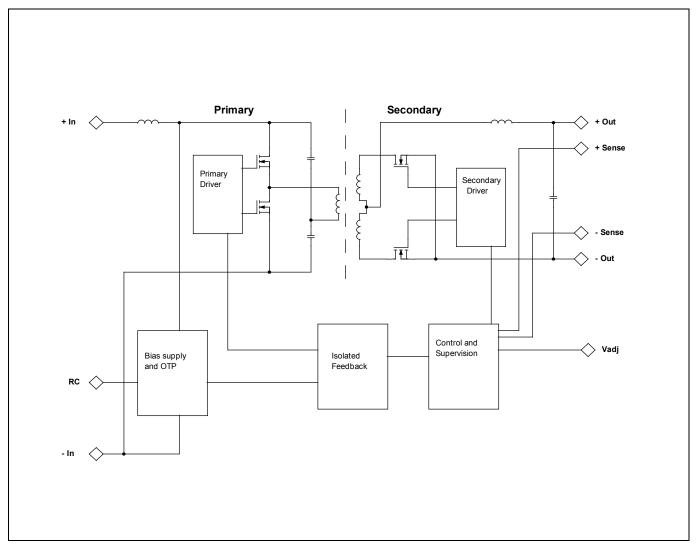
If the input voltage to the DC/DC converter is 75 Vdc or less, then the output remains SELV (Safety Extra Low Voltage) under normal and abnormal operating conditions.

Single fault testing in the input power supply circuit should be performed with the DC/DC converter connected to demonstrate that the input voltage does not exceed 75 Vdc.

If the input power source circuit is a DC power system, the source may be treated as a TNV2 circuit and testing has demonstrated compliance with SELV limits and isolation requirements equivalent to Basic Insulation in accordance with IEC/EN/UL60950.

Non-isolated DC/DC regulators

The input voltage to the DC/DC regulator is SELV (Safety Extra Low Voltage) and the output remains SELV under normal and abnormal operating conditions.


D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex

Absolute Maximum Ratings

Char	Characteristics			typ	max	Unit
T _{P1}	T _{P1} Operating Temperature (see Thermal Consideration section)		-40		+125	°C
Ts	T _s Storage temperature		-55		+110	°C
VI	Vi Input voltage		-0.5		+80	V
V_{iso}	V _{iso} Isolation voltage (input to output test voltage)				2250	Vdc
V _{tr}	V _{tr} Input voltage transient (t _p 100 ms)				100	V
V	Remote Control pin voltage	Positive logic option	0		40	V
V _{RC}	(see Operating Information section)	Negative logic option	0		40	V
V_{adj}	V _{adj} Adjust pin voltage (see Operating Information section)		-0.5		$2 x V_{\text{oi}}$	V

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits in the Electrical Specification. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Fundamental Circuit Diagram

D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex

3.3V, 30A /99W Electrical Specification

PKB 4910A PI

 T_{P1} = -30 to +90°C, V₁ = 36 to 72 V, sense pins connected to output pins unless otherwise specified under Conditions. Typical values given at: T_{P1} = +25°C, V₁= 53 V₁ max I₀, unless otherwise specified under Conditions. Additional C_{in} = 33 µF. See Operating Information section for selection of capacitor types.

Chara	cteristics	Conditions	min	typ	max	Unit
VI	Input voltage range		36		72	V
V_{loff}	Turn-off input voltage	Decreasing input voltage	30	31	32	V
Vlon	Turn-on input voltage	Increasing input voltage	33	34	35	V
Cı	Internal input capacitance			5.7		μF
Po	Output power		0		99	W
	Efficiency	50 % of max I_0		92.4		
		max I ₀		91.0		%
η		50 % of max I_0 , V_1 = 48 V		92.7		
		max I ₀ , V ₁ = 48 V		91.0		
Pd	Power Dissipation	max I ₀		9.8	14	W
Pli	Input idling power	I ₀ = 0 A, V ₁ = 53 V		1.8		W
P _{RC}	Input standby power	V ₁ = 53 V (turned off with RC)		0.1		W
fs	Switching frequency	0-100 % of max I ₀	162	180	198	kHz

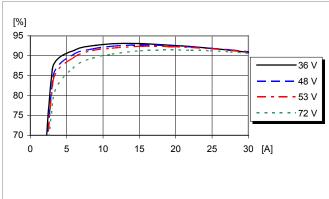
V _{Oi}	Output voltage initial setting and accuracy	T_{P1} = +25°C, V ₁ = 53 V, I ₀ = 30 A	3.23	3.30	3.37	V
	Output adjust range	See operating information (see Note 1)	2.64		3.63	V
Vo	Output voltage tolerance band	0-100 % of max I ₀	3.2		3.4	V
0	Line regulation	max I _o		±3	±10	mV
	Load regulation	$V_1 = 53 V, 0-100 \% \text{ of max } I_0$		±5	±10	mV
V _{tr}	Load transient voltage deviation	V ₁ = 53 V, Load step 25-75-25 % of max I ₀ , di/dt = 1 A/us		±200	±350	mV
t _{tr}	Load transient recovery time	See Note 2		40		μs
t _r	Ramp-up time (from 10-90 % of V _{Oi})	0-100 % of max Io		8		ms
ts	Start-up time (from V _I connection to 90 % of V _{Oi})			12		ms
t _f	V _I shut-down fall time	max I _o		50		μS
4	(from $V_{\rm l} off$ to 10 % of $V_{\rm O})$	$I_{O} = 0 A$		5		S
	RC start-up time	max I _o		12		ms
t _{RC}	RC shut-down fall time	max I _o		37		μS
	(from RC off to 10 % of V_0)	I ₀ = 0 A		5		S
lo	Output current		0		30	А
l _{lim}	Current limit threshold	$T_{P1} < max T_{P1}$		40		A
I _{sc}	Short circuit current	T _{P1} = 25°C, see Note 3		45		A
Cout	Recommended Capacitive Load	T _{P1} = 25°C, see Note 4	0		3000	μF
V_{Oac}	Output ripple & noise	See ripple & noise section, max I_{O} , V_{Oi}		60	120	mVp-p
OVP	Over voltage protection	T_{P1} = +25°C, V ₁ = 53 V, 0-100 % of max I ₀	3.8	4.3	4.8	V

Note 1: At trim-up, the minimum $V_{ln}\!/V_{out}$ ratio must be kept, i.e. 5 % trim up require $V_{ln}\!>$ 37.8 V

Note 2: 3000 uF; ESR value 5 m Ω

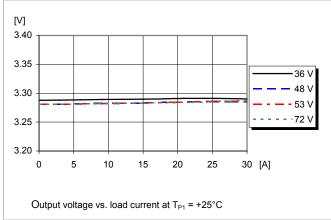
Note 3: Constant current V_o < 0.5 V

Note 4: See Operating Information Section

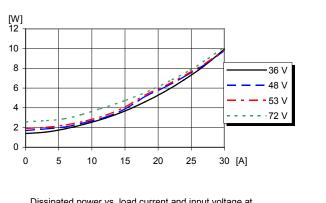

flex

Technical Specification

D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex

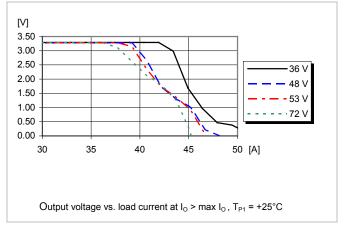

3.3V, 30A /99W Typical Characteristics

Efficiency



Efficiency vs. load current and input voltage at T_{P1} = +25°C

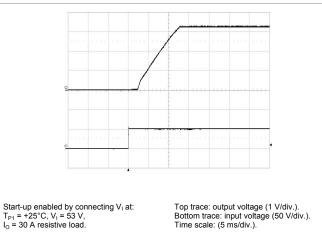
Output Characteristics

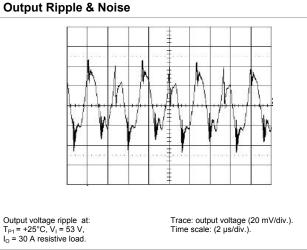


Power Dissipation

Dissipated power vs. load current and input voltage at $T_{\rm P1}$ = +25°C

Current Limit Characteristics


6


PKB 4910A PI

D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex

3.3V, 30A /99W Typical Characteristics

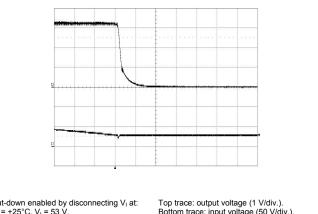
Start-up

Output Voltage Adjust (see operating information)

Passive adjust

The resistor value for an adjusted output voltage is calculated by using the following equations:

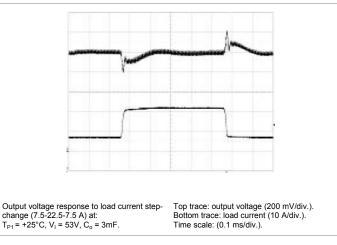
Output Voltage Adjust Upwards, Increase:


Radi -	$(5.1 \times 3.30(100 + \Delta\%))$	510 10 2	kO
Nauj =	1.225 × ∆%	$-\frac{10.2}{\Delta\%}$	K2 2

Example: Increase 4% =>V_{out} = 3.432 Vdc $\left(5.1 \times 3.30(100 + 4) - \frac{510}{100} - 10.2\right)$ k $\Omega = 220$ k Ω 1.225 × 4 4

Output Voltage Adjust Downwards, Decrease:

 $Radj = 5.11 \times \left(\frac{100}{\Delta\%} - 2\right) k\Omega$


Shut-down

Shut-down enabled by disconnecting V_I at: T_{P_1} = +25°C, V_I = 53 V, I_0 = 30 A resistive load.

Top trace: output voltage (1 V/div.). Bottom trace: input voltage (50 V/div.). Time scale: (50 us/div.).

Output Load Transient Response

Active adjust

The output voltage may be adjusted using a {current/voltage} applied to the Vadj pin. This {current/voltage} is calculated by using the following equations:

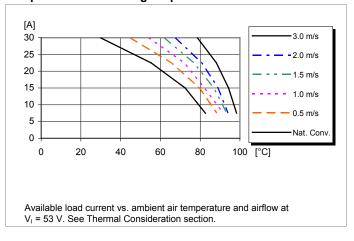
$$Vadj = \left(1.225 + 2.45 \times \frac{Vdesired - 3.30}{3.30}\right) V$$

Example: Upwards => 3.50 V

$$\left(1.225 + 2.45 \times \frac{3.50 - 3.30}{3.30}\right) \mathsf{V} = 1.37 \mathsf{V}$$

7

PKB 4910A PI


flex

Technical Specification

D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex

3.3V, 30A /99W Typical Characteristics

Output Current Derating – Open frame

PKB 4910A PI

D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex

5.0V, 25A /125W Electrical Specification

PKB 4111A PI

 T_{P1} = -30 to +90°C, V₁ = 36 to 72 V, sense pins connected to output pins unless otherwise specified under Conditions. Typical values given at: T_{P1} = +25°C, V₁= 53 V₁ max I₀, unless otherwise specified under Conditions. Additional C_{in} = 33 µF. See Operating Information section for selection of capacitor types.

Chara	cteristics	Conditions	min	typ	max	Unit
Vı	Input voltage range		36		72	V
V _{loff}	Turn-off input voltage	Decreasing input voltage	30	31	32	V
V _{Ion}	Turn-on input voltage	Increasing input voltage	33	34	35	V
Cı	Internal input capacitance			5.7		μF
Po	Output power		0		125	W
η E1	Efficiency	50 % of max I _o		93.3		%
		max I ₀		92.6		
	Efficiency	50 % of max I_0 , V_1 = 48 V		93.5		
		max I _o , V _I = 48 V		92.6		
Pd	Power Dissipation	max I _o		10.0	13.5	W
P _{li}	Input idling power	I ₀ = 0 A, V ₁ = 53 V		2.4		W
RC	Input standby power	V ₁ = 53 V (turned off with RC)		0.1		W
s	Switching frequency	0-100 % of max I ₀	162	180	196	kHz

V _{Oi}	Output voltage initial setting and accuracy	T _{P1} = +25°C, V ₁ = 53 V, I ₀ = 25 A	4.90	5.00	5.10	V
	Output adjust range	See operating information (see Note 1)	4.0		5.5	V
Vo	Output voltage tolerance band	0-100 % of max I ₀	4.85		5.15	V
0	Line regulation	max I _o		±3	±10	mV
	Load regulation	V_{I} = 53 V, 0-100 % of max I_{O}		±3	±10	mV
V _{tr}	Load transient voltage deviation	V ₁ = 53 V, Load step 25-75-25 % of max I ₀ , di/dt = 1 A/us		±160	±250	mV
t _{tr}	Load transient recovery time	See Note 2		50		μs
tr	Ramp-up time (from 10–90 % of V _{Oi})	0-100 % of max Io		9		ms
ts	Start-up time (from V _I connection to 90 % of V _{Oi})	- 100 % of max 1 ₀		13		ms
t _f	V _I shut-down fall time	max I _o		0.5		ms
ч	(from $V_{\rm I} off$ to 10 % of $V_{\rm O})$	$I_{O} = 0 A$		5		S
	RC start-up time	max I _o		13		ms
t _{RC}	RC shut-down fall time	max I _o		0.3		ms
	(from RC off to 10 % of $V_{\rm O})$	I ₀ = 0 A		5		S
lo	Output current		0		25	А
l _{lim}	Current limit threshold	$T_{P1} < max T_{P1}$		32		А
l _{sc}	Short circuit current	T _{P1} = 25°C, see Note 3		38		А
Cout	Recommended Capacitive Load	T _{P1} = 25°C, see Note 4	0		2500	μF
V_{Oac}	Output ripple & noise	See ripple & noise section, max I_{O} , V_{Oi}		60	120	mVp-p
OVP	Over voltage protection	T_{P1} = +25°C, V ₁ = 53 V, 0-100 % of max I ₀		6.3	7.4	V

Note 1: At trim-up, the minimum $V_{ln}\!/V_{out}$ ratio must be kept, i.e. 5 % trim up require $V_{ln}\!>$ 37.8 V

Note 2: 2500uF; ESR value $10m\Omega$

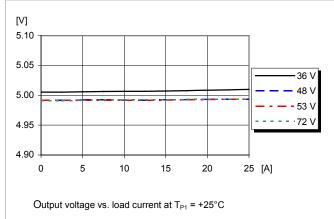
Note 3: Constant current V_o < 0.5 V

Note 4: See Operating Information Section

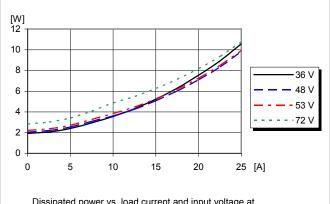
flex

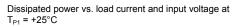
Technical Specification

D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex

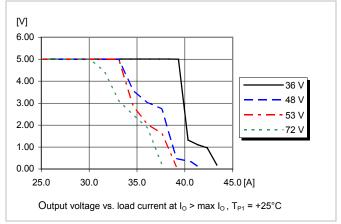

5.0V, 25A /125W Typical Characteristics

Efficiency



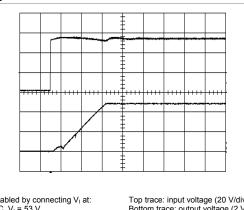

Efficiency vs. load current and input voltage at T_{P1} = +25°C

Output Characteristics



Power Dissipation

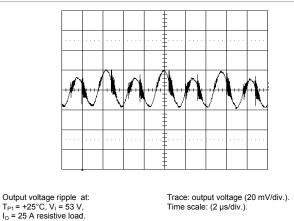
Current Limit Characteristics


10

PKB 4111A PI

D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex

5.0V, 25A /125W Typical Characteristics


Start-up

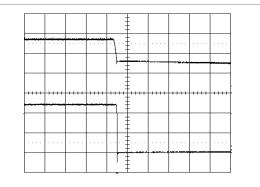
Start-up enabled by connecting V_I at: T_{P1} = +25°C, V_I = 53 V, I_O = 25 A resistive load.

Top trace: input voltage (20 V/div.). Bottom trace: output voltage (2 V/div.). Time scale: (5 ms/div.).

Output Ripple & Noise

Output Voltage Adjust (see operating information)

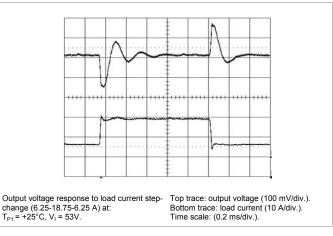
Passive adjust


The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust Upwards, Increase: $\left(\frac{5.10 \times 5.00 (100 + \Delta\%)}{1.225 \times \Delta\%} - \frac{510}{\Delta\%} - 10.2\right) \ \text{k}\Omega$ Radi =

Example: Increase 4% =>V_{out} = 5.2 Vdc 1.225×4 4

Output Voltage Adjust Downwards, Decrease: $\textit{Radj} = 5.11 \times \left(\frac{100}{\Delta\%} - 2\right) k\Omega$


Shut-down

Shut-down enabled by disconnecting V_I at: T_{P1} = +25°C, V_I = 53 V, I_O = 25A resistive load.

Top trace: input voltage (20 V/div.). Bottom trace: output voltage (2 V/div.). Time scale: (5 ms/div.).

Output Load Transient Response

Active adjust

The output voltage may be adjusted using a {current/voltage} applied to the Vadj pin. This {current/voltage} is calculated by using the following equations:

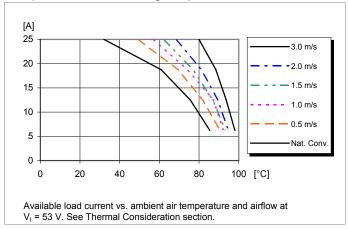
$$V_{adj} = \left(1.225 + 2.45 \times \frac{V desired - 5.00}{5.00}\right) V$$

Example: Upwards => 5.30 V

$$\left(1.225 + 2.45 \times \frac{5.30 - 5.00}{5.00}\right) \mathsf{V} = 1.37 \mathsf{V}$$

11

PKB 4111A PI


flex

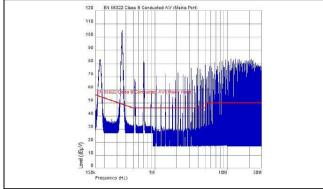
Technical Specification 12

D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex

5.0V, 25A / 125W Typical Characteristics

Output Current Derating – Open frame

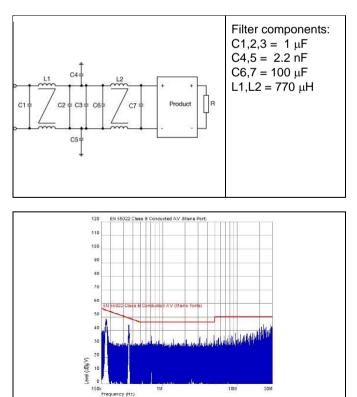
PKB 4111A PI

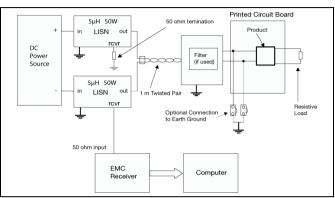

Technical Specification 1

D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex

EMC Specification

Conducted EMI measured according to EN55022, CISPR 22 and FCC part 15J (see test set-up). See Design Note 009 for further information. The fundamental switching frequency is 180 kHz for PKB 4910A PINB @ $V_1 = 53$ V, max I₀.

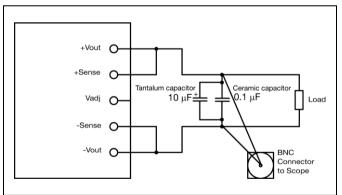

Conducted EMI Input terminal value (typ)

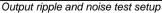

EMI without filter

External filter (class B)

Required external input filter in order to meet class B in EN 55022, CISPR 22 and FCC part 15J.

EMI with filter


Layout recommendations


The radiated EMI performance of the Product will depend on the PCB layout and ground layer design. It is also important to consider the stand-off of the product. If a ground layer is used, it should be connected to the output of the product and the equipment ground or chassis.

A ground layer will increase the stray capacitance in the PCB and improve the high frequency EMC performance.

Output ripple and noise

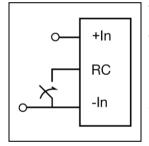
Output ripple and noise measured according to figure below. See Design Note 022 for detailed information.

D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex

Operating information

Input Voltage

The input voltage range 36 to 72Vdc meets the requirements of the European Telecom Standard ETS 300 132-2 for normal input voltage range in -48 and -60 Vdc systems, -40.5 to -57.0 V and -50.0 to -72 V respectively.


At input voltages exceeding 72 V, the power loss will be higher than at normal input voltage and T_{P1} must be limited to absolute max +125°C. The absolute maximum continuous input voltage is 80 Vdc.

Turn-off Input Voltage

The products monitor the input voltage and will turn on and turn off at predetermined levels.

The minimum hysteresis between turn on and turn off input voltage is 2V.

Remote Control (RC)

The products are fitted with a remote control function referenced to the primary negative input connection (-In), with negative and positive logic options available. The RC function allows the product to be turned on/off by an external device like a semiconductor or mechanical switch. The RC pin has an internal pull up resistor to +In.

The maximum required sink current is 1 mA. When the RC pin is left open, the voltage generated on the RC pin is 5 - 7 V or 10-13V for "P" option. The standard product is provided with "negative logic" remote control and will be off until the RC pin is connected to the -In. To turn on the product the voltage between RC pin and -In should be less than 1V. To turn off the converter the RC pin should be left open, or connected to a voltage higher than 4.5 V referenced to -In. In situations where it is desired to have the product to power up automatically without the need for control signals or a switch, the RC pin can be wired directly to -In.

The second option is "positive logic" remote control, which can be ordered by adding the suffix "P" to the end of the part number. When the RC pin is left open, the product starts up automatically when the input voltage is applied. Turn off is achieved by connecting the RC pin to the -In. To ensure safe turn off the voltage difference between RC pin and the -In pin shall be less than 1V. The product will restart automatically when this connection is opened.

See Design Note 021 for detailed information.

Input and Output Impedance

The impedance of both the input source and the load will interact with the impedance of the product. It is important that the input source has low characteristic impedance. The products are designed for stable operation without external capacitors connected to the input or output. The performance in some applications can be enhanced by addition of external capacitance as described under External Decoupling Capacitors.

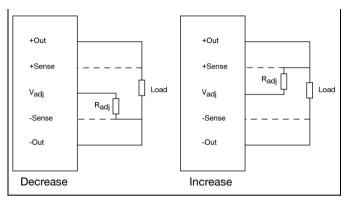
If the input voltage source contains significant inductance, the addition of a 100 μ F capacitor across the input of the product will ensure stable operation. The capacitor is not required when powering the product from an input source with an inductance below 10 μ H. The minimum required capacitance value depends on the output power and the input voltage. The higher output power the higher input capacitance is needed.

External Decoupling Capacitors

When powering loads with significant dynamic current requirements, the voltage regulation at the point of load can be improved by addition decupling capacitors at the load with >10% of the maximum recommended value found in the electrical specification.

The most effective technique is to locate low ESR ceramic and electrolytic capacitors as close to the load as possible, using several parallel capacitors to lower the effective ESR. The ceramic capacitors will handle high-frequency dynamic load changes while the electrolytic capacitors are used to handle low frequency dynamic load changes. It is equally important to use low resistance and low inductance PCB layouts and cabling.

External decoupling capacitors will become part of the product's control loop. The control loop is optimized for a wide range of external capacitance and the maximum recommended value that could be used without any additional analysis is found in the Electrical specification. The ESR of the capacitors is a very important parameter. Stable operation is guaranteed with a verified ESR value of >10 m Ω across the output connections. For further information please contact your local Flex Power Modules representative.


Output Voltage Adjust (Vadj)

The products have an Output Voltage Adjust pin (V_{adj}). This pin can be used to adjust the output voltage above or below Output voltage initial setting.

When increasing the output voltage, the voltage at the output pins (including any remote sense compensation) must be kept below the threshold of the over voltage protection, (OVP) to prevent the product from shutting down. At increased output voltages the maximum power rating of the product remains the same, and the max output current must be decreased correspondingly.

To increase the voltage the resistor should be connected between the V_{adj} pin and +Sense pin. The resistor value of the Output voltage adjust function is according to information given under the Output section for the respective product. To decrease the output voltage, the resistor should be connected between the V_{adj} pin and –Sense pin.

D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex

Parallel Operation

Two products may be paralleled for redundancy if the total power is equal or less than P_0 max. It is not recommended to parallel the products without using external current sharing circuits.

See Design Note 006 for detailed information.

Remote Sense

The products have remote sense that can be used to compensate for voltage drops between the output and the point of load. The sense traces should be located close to the PCB ground layer to reduce noise susceptibility. The remote sense circuitry will compensate for up to 10% voltage drop between output pins and the point of load.

If the remote sense is not needed +Sense should be connected to +Out and -Sense should be connected to -Out.

Over Temperature Protection (OTP)

The products are protected from thermal overload by an internal over temperature shutdown circuit.

When T_{P1} as defined in thermal consideration section exceeds 140°C the product will shut down. The product will make continuous attempts to start up (non-latching mode) and resume normal operation automatically when the temperature has dropped >15°C below the temperature threshold.

Over Voltage Protection (OVP)

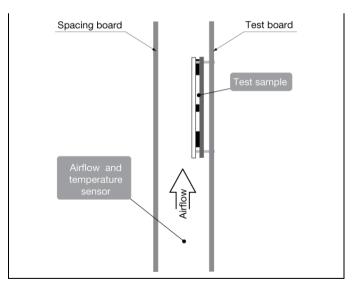
The products have output over voltage protection that will shut down the product in over voltage conditions. The product will make continuous attempts to start up (non-latching mode) and resume normal operation automatically after removal of the over voltage condition.

Over Current Protection (OCP)

The products include current limiting circuitry for protection at continuous overload. The output voltage will decrease towards zero for output currents in excess of max output current (max I_0). The product will resume normal operation after removal of the overload. The load distribution should be designed for the maximum output short circuit current specified.

Pre-bias Start-up

The products do not support pre-biased start up with zero reverse current.

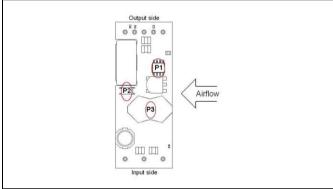

Thermal Consideration

General

The products are designed to operate in different thermal environments and sufficient cooling must be provided to ensure reliable operation.

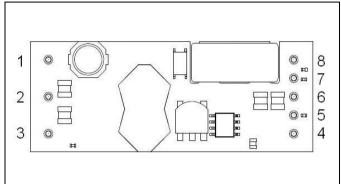
Cooling is achieved mainly by conduction, from the pins to the host board, and convection, which is dependant on the airflow across the product. Increased airflow enhances the cooling of the product. The Output Current Derating graph found in the Output section for each model provides the available output current vs. ambient air temperature and air velocity at $V_1 = 53$ V.

The product is tested on a 254 x 254 mm, 35 μ m (1 oz), 16-layer test board mounted vertically in a wind tunnel with a cross-section of 608 x 203 mm.



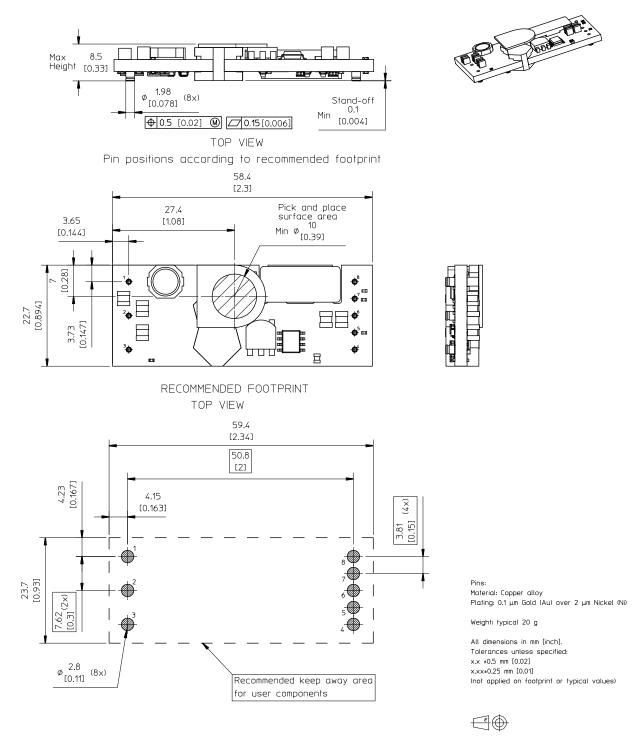
D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex

Definition of product operating temperature


The product operating temperatures is used to monitor the temperature of the product, and proper thermal conditions can be verified by measuring the temperature at positions P1, P2 and P2. The temperature at these positions (T_{P1} , T_{P2} , T_{P3}) should not exceed the maximum temperatures in the table below. The number of measurement points may vary with different thermal design and topology. Temperatures above maximum T_{P1}, measured at the reference point P1 are not allowed and may cause permanent damage.

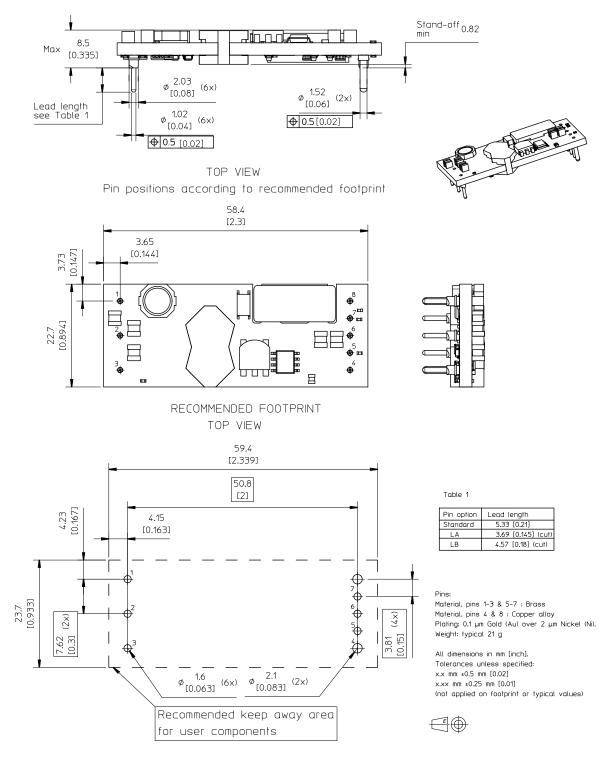
Position	Description	Max Temp.
P1	Mosfet pin	T _{P1} =130° C
P2	Opto coupler (case)	T _{P2} =110° C
P3	Transformer	T _{P3} =130° C
	•	•

Open frame


Connections

Pin	Designation	Function
1	+In	Positive input
2	RC	Remote control
3	-In	Negative input
4	-Out	Negative output
5	-Sen	Negative remote sense
6	Vadj	Output voltage adjust
7	+Sen	Positive remote sense
8	+Out	Positive output

D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex


Mechanical Information - SMD, Open Frame Version

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product's life cycle, unless explicitly described and dimensioned in this drawing.

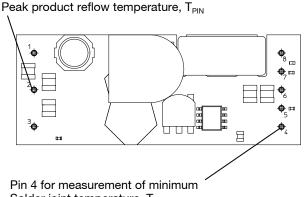
D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex

Mechanical Information- Hole Mount, Open Frame Version

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product's life cycle, unless explicitly described and dimensioned in this drawing.

D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex

Soldering Information - Surface Mounting


The surface mount version of the product is intended for convection or vapor phase reflow SnPb and Pb-free processes. To achieve a good and reliable soldering result, make sure to follow the recommendations from the solder paste supplier, to use state-of-the-art reflow equipment and reflow profiling techniques as well as the following guidelines.

A no-clean flux is recommended to avoid entrapment of cleaning fluids in cavities inside the product or between the product and the host board. The cleaning residues may affect long time reliability and isolation voltage.

Minimum Pin Temperature Recommendations

Pin number 4 is chosen as reference location for the minimum pin temperature recommendations since this will likely be the coolest solder joint during the reflow process.

Pin 2 for measurement of maximum

Solder joint temperature, T_{PIN}

SnPb solder processes

For SnPb solder processes, a pin temperature (T_{PIN}) in excess of the solder melting temperature, (T_L , +183°C for Sn63/Pb37) for more than 30 seconds, and a peak temperature of +210°C is recommended to ensure a reliable solder joint.

Lead-free (Pb-free) solder processes

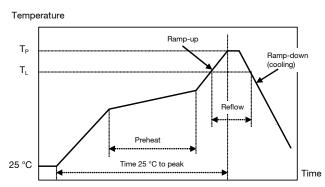
For Pb-free solder processes, a pin temperature (T_{PIN}) in excess of the solder melting temperature (T_L , +217 to +221°C for Sn/Ag/Cu solder alloys) for more than 30 seconds, and a peak temperature of +235°C on all solder joints is recommended to ensure a reliable solder joint.

Peak Product Temperature Requirements

Pin number 2 is chosen as reference location for the maximum (peak) allowed product temperature (T_P) since this will likely be the warmest part of the product during the reflow process.

To avoid damage or performance degradation of the product, the reflow profile should be optimized to avoid excessive heating. A sufficiently extended preheat time is recommended to ensure an even temperature across the host PCB, for both small and large devices. To reduce the risk of excessive heating is also recommended to reduce the time in the reflow zone as much as possible.

SnPb solder processes


For SnPb solder processes, the product is qualified for MSL 1 according to IPC/JEDEC standard J-STD-020C.

During reflow, T_P must not exceed +225°C at any time.

Lead-free (Pb-free) solder processes

For Pb-free solder processes, the product is qualified for MSL 3 according to IPC/JEDEC standard J-STD-020C.

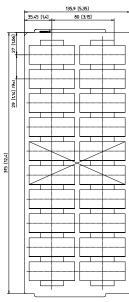
During reflow, T_P must not exceed +260°C at any time.

Reflow process specification	ons	Sn/Pb eutectic	Pb-free
Average ramp-up rate		3°C/s max	3°C/s max
Solder melting temperature (typical)	TL	+183°C	+221°C
Minimum time above $T_{\scriptscriptstyle L}$		30 s	30 s
Minimum pin temperature	T _{PIN}	+210°C	+235°C
Peak product temperature	Τ _Ρ	+225°C	+260°C
Average ramp-down rate		6°C/s max	6°C/s max
Time 25°C to peak		6 minutes max	8 minutes max

D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex

Soldering Information – Through Hole Mounting

The through hole mount version of the product is intended for manual or wave soldering. When wave soldering is used, the temperature on the pins is specified to maximum 270°C for maximum 10 seconds.

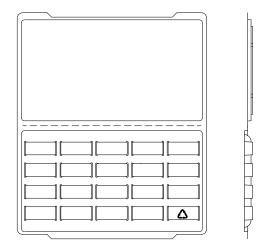

A maximum preheat rate of 4° C/s and a temperature of max $+150^{\circ}$ C is suggested. When soldering by hand, care should be taken to avoid direct contact between the hot soldering iron tip and the pins for more than a few seconds in order to prevent overheating.

A no-clean flux is recommended to avoid entrapment of cleaning fluids in cavities inside the product or between the product and the host board. The cleaning residues may affect long time reliability and isolation voltage.

Delivery Package Information, Surface Mount Version

The surface mount versions of the products are delivered in antistatic injection molded trays (Jedec design guide 4.10D standard.

Tray Specifications			
Material	PPE, Antistatic		
Surface resistance	$10^5 < Ohm/square < 10^{12}$		
Bakability	The trays can be baked at maximum 125°C for 48 hours		
Tray capacity	20 products/tray		
Tray thickness	13.4 mm [0.528 inch]		
Box capacity	100 products (5 full trays/box)		
Tray weight	110 g empty, 530 g full tray		



X= Vacuum pickup area.

Delivery Package Information, Through Hole Mounting Version

The products are delivered in antistatic clamshell.

Clamshell Specifications		
Material	PET with antistatic coated	
Surface resistance 10 ⁶ < Ohm/square < 10 ¹²		
Bake ability The clamshells are not bake-able.		
Clamshell capacity	capacity 20 products/clamshell	
Clamshell thickness	20 mm [0.787 inch]	
Box capacity	100 products (5 full trays/box)	
Clamshell weight	130 g empty, 530 g full tray	

Non-Dry Pack Information

The through hole mount version of product is delivered in non-dry packing clamshells.

Dry Pack Information

The surface mount versions of the products are delivered in trays These inner shipment containers are dry packed in standard moisture barrier bags according to IPC/JEDEC standard J-STD-033 (Handling, packing, shipping and use of moisture/reflow sensitivity surface mount devices).

Using products in high temperature Pb-free soldering processes requires dry pack storage and handling. In case the products have been stored in an uncontrolled environment and no longer can be considered dry, the modules must be baked according to J-STD-033.

D?6 (\$\$\$5 series Direct Converters	EN/LZT 146 420 R4A October 2017
Input 36-72 V, Output up to 30 A / 125 W	© Flex

Product Qualification Specification

Characteristics			
External visual inspection	IPC-A-610		
Change of temperature (Temperature cycling)	IEC 60068-2-14 Na	Temperature range Number of cycles Dwell/transfer time	-40 to +100°C 1000 15 min/0-1 min
Cold (in operation)	IEC 60068-2-1 Ad	Temperature T _A Duration	-45°C 72 h
Damp heat	IEC 60068-2-67 Cy	Temperature Humidity Duration	+85°C 85 % RH 1000 hours
Dry heat	IEC 60068-2-2 Bd	Temperature Duration	+125°C 1000 h
Electrostatic discharge susceptibility	IEC 61340-3-1, JESD 22-A114 IEC 61340-3-2, JESD 22-A115	Human body model (HBM) Machine Model (MM)	Class 2, 2000 V Class 3, 200 V
Immersion in cleaning solvents	IEC 60068-2-45 XA Method 2	Water Glycol ether Isopropyl alcohol	+55°C +35°C +35°C
Mechanical shock	IEC 60068-2-27 Ea	Peak acceleration Duration	100 g 6 ms
Moisture reflow sensitivity ¹	J-STD-020C	Level 1 (SnPb-eutectic) Level 3 (Pb Free)	225°C 260°C
Operational life test	MIL-STD-202G method 108A	Duration	1000 h
Resistance to soldering heat ²	IEC 60068-2-20 Tb Method 1A	Solder temperature Duration	270°C 10-13 s
Robustness of terminations	IEC 60068-2-21 Test Ua1 IEC 60068-2-21 Test Ue1	Through hole mount products Surface mount products	All leads All leads
Solderability	IEC 60068-2-58 test Td ¹	Preconditioning Temperature, SnPb Eutectic Temperature, Pb-free	150°C dry bake 16 h 215°C 235°C
	IEC 60068-2-20 test Ta ²	Preconditioning Temperature, SnPb Eutectic Temperature, Pb-free	Steam ageing 235°C 245°C
Vibration, broad band random	IEC 60068-2-64 Fh, method 1	Frequency Spectral density Duration	10 to 500 Hz 0.07 g ² /Hz 10 min in each perpendicular direction

Note 1: Only for products intended for reflow soldering (surface mount products) Note 2: Only for products intended for wave soldering (plated through hole products)