

CA-IS302x Low-Power Bidirectional I²C Isolators

1. Features

- Bidirectional Data Transfer from DC to 2.0MHz
- Robust Galvanic Isolation of Digital Signals
 - High lifetime: >40 years
 - Withstands up to 3.75kV_{RMS} (narrow-body package) and 5kV_{RMS} (wide-body packages) isolation rating for 60s (V_{ISO})
 - Narrow-body and wide-body Packages (4mm or 8mm Creepage and Clearance)
 - ±150 kV/μs typical CMTI
 - Schmitt trigger inputs for high noise immunity
 - High electromagnetic immunity and withstands ±10kV surge
 - ±8kV Human Body Model ESD Protection
- 3.0V to 5.5V Wide Supply Operation
- Wide Operating Temperature Range: -55°C to 125°C
- RoHS-Compliant Packages
 - Narrow-body SOIC8-NB(S) package
 - Wide-body SOIC8-WB(G) package
 - Wide-body SOIC16-WB(W) package

Open-drain Outputs

- 3.5mA Side A sink current capability
- 35mA Side B sink current capability

2. Applications

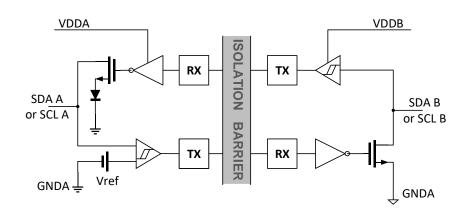
- I²C, SMBus, PMBus™ Interfaces
- Motor control systems
- Medical Equipment
- Battery Management
- Instrumentation

3. General Description

The CA-IS302x devices are complete dual-channel, galvanic digital isolators with up to 3.75kV $_{RMS}$ (narrow-body package)/5kV $_{RMS}$ (wide-body package) isolation rating and

±150kV/µs typical CMTI. All device versions have Schmitt trigger inputs for high noise immunity and each isolation channel has a logic input and output buffer separated by capacitive silicon dioxide (SiO₂) insulation barrier to provide high electromagnetic immunity and low EMI. These devices feature high-integration design and only require fewer external components, V_{DDA}, V_{DDB} bypass capacitors and pull-up resistors, to build an isolated I²C interface.

This family of devices operates from DC to 2.0MHz. The CA-IS3020 offers two bidirectional, open-drain channels for applications, such as multi-master I²C, that require data and clock to be transmitted in both directions on the same line. The CA-IS3021 provides an isolated I²C compatible interface supporting master mode only, with a unidirectional clock (SCL), and bidirectional data (SDA). All devices feature independent 3.0V to 5.5V supplies on each side of the isolator and the logic levels are set independently on either side by V_{DDA} and V_{DDB}. A simplified block diagram for a single CA-IS302x channel is shown in the figure below.


The CA-IS302x family are specified over the -55°C to +125°C operating temperature range and are available in 8-pin SOIC narrow body package, 8-pin SOIC wide body package and 16-pin SOIC wide body package. The wide temperature range and high isolation voltage make the devices ideal for use in harsh industrial environments.

Device information

PART NUMBER	PACKAGE	BODY SIZE (NOM)	
	SOIC8(S)	4.90mm ×3.90 mm	
CA-IS3020 CA-IS3021	SOIC8-WB(G)	5.85 mm ×7.50 mm	
	SOIC16-WB(W)	10.30 mm × 7.50 mm	

CA-IS302x functional block diagram

4. Ordering Information

Table. 4-1 Ordering Information

3 3 3 3 3							
Part Number	# of Bidirectional Channels	# of Unidirectional Channels	Rated Voltage (kV)	Default Output	Package		
CA-IS3020S	2	0	3.75	Open drain	SOIC8		
CA-IS3021S	1	1	3.75	Open drain	SOIC8		
CA-IS3020G	2	0	5.0	Open drain	SOIC8-WB		
CA-IS3021G	1	1	5.0	Open drain	SOIC8-WB		
CA-IS3020W	2	0	5.0	Open drain	SOIC16-WB		
CA-IS3021W	1	1	5.0	Open drain	SOIC16-WB		

Contents

1.	Featu	res	1
2.	Appli	cations	1
3.	Gene	ral Description	1
4.	Order	ring Information	2
5.	Revisi	ion History	3
6.	Pin Co	onfiguration and Description	4
7.	Specif	fications	5
	7.1.	Absolute Maximum Ratings ¹	5
	7.2.	ESD Ratings	5
	7.3.	Recommended Operating Conditions	5
	7.4.	Thermal Information	6
	7.5.	Power Ratings	6
	7.6.	Insulation Specifications	7
	7.7.	Safety-Related Certifications	8
	7.8.	Electrical Characteristics	9
	7.9.	Supply Current Characteristics	10
	7.10.	Timing Requirements	10

	7.11.	Switching Characteristics	11
8.	Parar	meter Measurement Information	12
9.	Detai	iled Description	13
	9.1.	Overview	13
	9.2.	Functional Block Diagrams	13
	9.3.	Device Operation Modes	14
10.	. Appli	cation Information	15
	10.1.	I ² C bus	15
	10.2.	Typical Application	15
11.	Packa	age Information	17
	11.1.	8-Pin Narrow Body SOIC Package	17
	11.2.	8-Pin Wide Body SOIC Package Outline	18
	11.3.	16-Pin Wide Body SOIC Package Outline	19
12.	Solde	ering Temperature (reflow) Profile	20
13.	Таре	and Reel Information	21
14.	Impo	rtant statement	22

5. Revision History

Revision 0: Initial version. Revision 0 to Revision A

6. Pin Configuration and Description

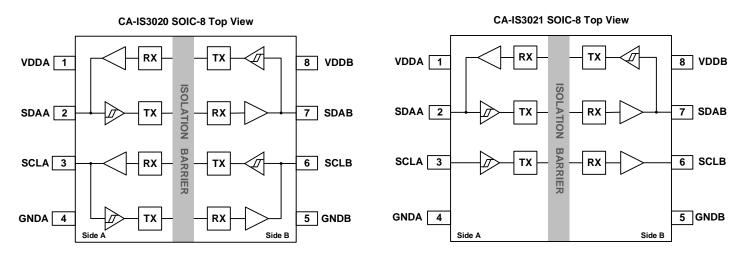


Figure. 6-1 CA-IS3020/21 SOIC-8 Top View

Table. 6-1 CA-IS3020 pin Description

Pin name	Pin number	Туре	Description
VDDA	1	Power	Power supply for side A.
SDAA	2	Digital I/O	Bidirectional data input/output on side A. SDAA is translated to/from SDAB and is an open-drain output.
SCLA	3	Digital I/O	Bidirectional clock input/output on side A. SCLA is translated to/from SCLB and is an open-drain output.
GNDA	4	Ground	Ground reference for side A.
GNDB	5	Ground	Ground reference for side B.
SCLB	6	Digital I/O	Bidirectional clock input/output on side B. SCLB is translated to/from SCLA and is an open-drain output.
SDAB	7	Digital I/O	Bidirectional data input/output on side B. SDAB is translated to/from SDAA and is an open-drain output.
VDDB	8	Power	Power supply for side B.

Table. 6-2 CA-IS3021 pin Description

Pin name	Pin number	Туре	Description
VDDA	1	Power	Power supply for side A.
SDAA	2	Digital I/O	Bidirectional data input/output on side A. SDAA is translated to/from SDAB
SDAA	2	Digital I/O	and is an open-drain output.
SCLA	3	Digital I/O	Clock input on side A. SCLA is translated to SCLB.
GNDA	4	Ground	Ground reference for side A.
GNDB	5	Ground	Ground reference for side B.
SCLB		Digital I/O	Clock output on side B. SCLB is translated from SCLA and is an open-drain
SCLB	6		output.
SDAB	7	Digital I/O	Bidirectional data input/output on side B. SDAB is translated to/from SDAA
SDAD	/	Digital I/O	and is an open-drain output.
VDDB	8	Power	Power supply for side B.

7. Specifications

7.1. Absolute Maximum Ratings¹

	Parameters	Minimum Value	Maximum Value	Unit
V_{DDA} , V_{DDB}	Power supply voltage ²	-0.5	6.0	V
SDAA, SCLA	Input/Output voltage	-0.5	V_{DDA} +0.5 ³	V
SDAB, SCLB	Input/Output voltage	-0.5	V_{DDB} +0.5 ³	V
I _{OA}	Output Current	-20	20	mA
I _{OB}	Output Current	-100	100	mA
T _J	Junction temperature		150	°C
T _{STG}	Storage temperature	-65	150	°C

Notes:

- 1. The stresses listed under "Absolute Maximum Ratings" are stress ratings only, not for functional operation condition. Exposure to absolute maximum rating conditions for extended periods may cause permanent damage to the device.
- 2. All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GNDA or GNDB) and are peak voltage values.
- 3. The maximum voltage must not be exceed 6 V.

7.2. ESD Ratings

		Numerical value	Unit
V _{ESD}	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ¹	±8000	V
Electrostatic discharge	Charged device model (CDM), per JEDEC Specification JESD22-C101, all pins ²	±2000	

Notes:

- 1. Per JEDEC document JEP155, 500V HBM allows safe manufacturing of standard ESD control process.
- 2. Per JEDEC document JEP157, 250V HBM allows safe manufacturing of standard ESD control process.

7.3. Recommended Operating Conditions

	Parameters		inimum Value	Maximum Value	Unit
V_{DDA}, V_{DDB}	Power supply voltage		3.0	5.5	V
V _{SDDA} , V _{VSCLA}	A side input voltage		0	V_{DDA}	V
V _{SDDB} , V _{VSCLB}	B side input voltage		0	V_{DDB}	V
V _{ILA}	A side Input low voltage		0	0.5	V
V _{IHA}	A side Input high voltage	0.	7xV _{DDA}	V_{DDA}	V
V _{ILB}	B side Input low voltage		0	$0.3xV_{DDB}$	V
V _{IHB}	B side Input high voltage	0.	7xV _{DDB}	VDDB	V
I _{OLA}	A side Output current (low level)		0.5	3.5	mA
I _{OLB}	B side Output current (low level)		0.5	35	mA
C _A	Maximum load capacitance on A side			40	pF
Св	Maximum load capacitance on B side			400	pF
f _{MAX}	Maximum Frequency			2	MHz
T _A	Environmental temperature		-40	125	°C
T _J	Junction temperature		-40	150	°C

7.4. Thermal Information

			CA-IS302x			
	Thermal Metric	W(SOIC-16)	G(SOIC-8)	s(soic-8)	Unit	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	86.5	92.3	109.0	°C/W	

7.5. Power Ratings

PARAMETER		TEST CONDITIONS		TYP	MAX	Unit
P_D	Maximum power dissipation (both sides)	V -V -FFVT-1F0°C C -40°F C -			86	mW
P _{DA}	Maximum power dissipation (side-A)	$V_{DDA} = V_{DDB} = 5.5 \text{ V}, T_J = 150 ^{\circ}\text{C}, C_A = 40 \text{ pF}, C_B = 400 \text{ pF}; Input a 1-MHz 50% duty cycle clock signal}$			34	mW
P _{DB}	Maximum power dissipation (side-B)	400 pr, iliput a 1-ivinz 50% duty cycle clock signal			52	mW

7.6. Insulation Specifications

	Paramotors	Test conditions		Value		Unit
	Parameters	lest conditions	W	G	S	Unit
CLR	External clearance	Shortest terminal-to-terminal distance through air	8	8	4	mm
CPG	External croopage	Shortest terminal-to-terminal distance across the	8	8	4	mm
CPG	External creepage	package surface	•	0	4	mm
DTI D	istance through the insulation	Minimum internal gap (internal clearance)	19	19	14	μm
CTI C	omparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	>600	>600	>600	٧
	Material group	In accordance with IEC 60664-1	I	I	I	
		Rated mains voltage ≤ 300 V _{RMS}	I-IV	I-IV	I-IV	
IEC 606	664-1 over-voltage category	Rated mains voltage ≤ 400 V _{RMS}	I-IV	I-IV	I-IV	1
		Rated mains voltage ≤ 600 V _{RMS}	1-111	1-111	n/a	7
DIN V \	/DE V 0884-11:2017-01 ¹	-		1		<u>. L</u>
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	849	849	565	V _{PK}
		AC voltage; time-dependent dielectric breakdown				+
V_{IOWM}	Maximum operating	(TDDB) test	600	600	400	V_{RMS}
	isolation voltage	DC voltage	849	849	565	V _{DC}
	Maximum transient isolation voltage	V _{TEST} = V _{IOTM} ,	7070			V _{PK}
V_{IOTM}		t=60 s (certified);		7070	5300	
		$V_{TEST} = 1.2 \times V_{IOTM}$				
		t=1 s (100% product test)				
	Maximum surge isolation voltage ²	Test method in accordance with IEC 60065, 1.2/50 μs				+
V_{IOSM}		waveform,	6250	6250	5000	V_{PK}
		$V_{TEST} = 1.6 \times V_{IOSM}$ (production test)				
		Method a, after input/output safety test of the sub-	≤5	≤5	≤5	
		category 2/3,				
		$V_{ini} = V_{IOTM}$, $t_{ini} = 60$ s;				
		$V_{pd(m)} = 1.2 \times V_{IORM}$, $t_m = 10 \text{ s}$				
		Method a, after environmental test of the sub-		45		7
_	Amazant abanca3	category 1,	7 F		4 F	
q_{pd}	Apparent charge ³	$V_{ini} = V_{IOTM}$, $t_{ini} = 60$ s;	≤5	≤5	≤5	pC
		$V_{pd(m)} = 1.6 \times V_{IORM}, t_m = 10 s$				
		Method b1, routine test (100% production test) and				
		preprocessing (sample test)	≤5	≤5	≤5	
		$V_{ini} = 1.2 \times V_{IOTM}$, $t_{ini} = 1$ s;	23	23	23	
		$V_{pd(m)} = 1.875 \times V_{IORM}, t_m = 1 s$				
C_{IO}	Barrier capacitance, input	$V_{IO} = 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz}$	~0.5	~0.5	~0.5	pF
	to output ⁴					μ.
		V _{IO} = 500 V, T _A = 25°C	>1012	>1012	>1012	
R_{IO}	Isolation resistance ⁴	V _{IO} = 500 V, 100°C ≤ T _A ≤ 125°C	>10 ¹¹	>1011	>1011	Ω
		$V_{IO} = 500 \text{ V at T}_S = 150^{\circ}\text{C}$	>109	>10 ⁹	>109	
	Contaminant level		2	2	2	
UL 157	7					
V _{ISO}	Maximum isolation voltage	$V_{TEST} = V_{ISO}$, t = 60 s (certified)	5000	5000	3750	V_{RMS}
• ISO	Maximum isolation voitage	$V_{TEST} = 1.2 \times V_{ISO}$, t = 1 s (100% production test)	3300	3000	3730	▼ RIVIS

Notes:

- 1. This coupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- 2. Devices are immersed in oil during surge characterization.
- 3. The characterization charge is discharging charge (pd) caused by partial discharge.
- 4. Capacitance and resistance are measured with all pins on field-side and logic-side tied together.

Revision A

7.7. Safety-Related Certifications

VDE (pending)	CSA (pending)	UL	cqc	TUV (pending)
Certified	Certified according	Certified according to	Certified according to	Certified according to EN/IEC 61010-
according to DIN V	to CSA/IEC 60950-	UL 1577 Component	GB4943.1-2011	1:2010 (3rd Ed) and EN/IEC 62368-
VDE V 0884-	1 and CSA/IEC	Recognition Program	and GB 8898-2011	1:2014+A11:2017
11:2017-01	62368-1			
		SOP8-S: 3750 V _{RMS} ;	SOP8-S: Basic insulation,	
		SOP8-G: 5000V _{RMS} ;	400 V _{RMS} maximum	
			working voltage.	
			SOP8-G: Reinforced	
			insulation, 600 V _{RMS}	
			maximum working voltage.	
			(Altitude ≤ 5000 m)	
		Certificate number:	Certificate number:	
		E511334	SOP8-S:	
			CQC20001267428	
			SOP8-G: CQC20001267438	

7.8. Electrical Characteristics

Over recommended operating conditions, unless otherwise specified

	Parameters	Test conditions	Minimum Value	Typical Value	Maximum Value	Unit
Side A						
V_{ILTA}	Logic low input threshold (SDAA and SCLA)		470	500	520	mV
V_{IHTA}	Logic high input threshold (SDAA and SCLA)		500	560	620	mV
V _{HYSA}	Voltage input hysteresis	V _{IHTA} -V _{ILTA}	40	60	80	mV
V _{OLA}	Logic low output voltage (SDAA and SCLA) ¹	0.5mA ≤ (I _{SDAA} and I _{SCLA}) ≤ 3.5mA	630	700	760	mV
ΔV _{OITA}	Logic-low output voltage to logic-high input voltage threshold difference (SDAA and SCLA) ^{1,2}	0.5 mA $\leq (I_{SDAA} \text{ and } I_{SCLA}) \leq 3.5$ mA	100			mV
Side B						
V _{ILTB}	Logic low input threshold (SDAB and SCLB)		1.13	1.33	1.53	mV
V _{IHTB}	Logic low output voltage (SDAB and SCLB)		1.55	1.75	1.97	mV
V _{HYSB}	Voltage input hysteresis	V _{IHTB} -V _{ILTB}	0.30	0.42	0.54	mV
V _{OLB}	Logic-low output voltage (SDAB and SCLB)	$0.5\text{mA} \le (I_{SDAB} \text{ and } I_{SCLB}) \le 3.5\text{mA}$			0.4	mV
Both Sides	•	•				•
1	Input leakage currents, SDAA, SCLA, SDAA, and SCLA	$V_{SDAA} = V_{SCLA} = VDDA$ $V_{SDAB} = V_{SCLB} = VDDB$			1	mV
Cı	Input capacitance to local ground (SDA1, SCL1, SDA2,and SCL2)			3		pF
CMTI	Common mode transient immunity	see Figure 8-3	100	150		kV/μS
V_{DDUV}	VDD_ Undervoltage-lockout threshold ³		1.95	2.24	2.53	pF

Notes:

- 1. This parameter apply to the CA-IS3020 (SDAA, SCLA) and CA-IS3021 SDAA bidirectional lines only.
- 2. $\Delta V_{\text{OITA}} = V_{\text{OLA}} V_{\text{IHTA}}$. This is the minimum difference between logic-low output voltage and a logic-high input voltage.
- 3. Any V_{DD} voltage on both side, less than the minimum will ensure device lockout. VDD_ voltage on both side A and side B greater than the maximum will prevent device lockout.

Revision A

7.9. Supply Current Characteristics

Over recommended operating conditions, unless otherwise specified, see Figure 8-1 for more information.

Parameters	Test conditions	Minimum Value	Typical Value	Maximum Value	Unit	
$3 \text{ V} \leq \text{V}_{\text{DDA}}, \text{V}_{\text{DDB}} \leq 3.6 \text{ V}$						
	$V_{SDAA} = V_{SCLA} = GNDA; V_{SDAB} = V_{SCLB} = GNDB;$	I _{DDA}		4.9	5.7	
CA-IS3020	R1 = R2 = OPEN; C1 = C2 = OPEN	I _{DDB}		4.7	5.2	
CA-133020	$V_{SDAA} = V_{SCLA} = V_{DDA}$; $V_{SDAB} = V_{SCLB} = V_{DDB}$;	I _{DDA}		2.4	2.8	
	R1 = R2 = OPEN; C1 = C2 = OPEN	I _{DDB}		2.2	2.6	mA
	$V_{SDAA} = V_{SCLA} = GNDA; V_{SDAB} = V_{SCLB} = GNDB;$	I _{DDA}		2.9	4.4	MA
CA 152021	R1 = R2 = OPEN; C1 = C2 = OPEN	I _{DDB}		2.4	3.7	
CA-IS3021	$V_{SDAA} = V_{SCLA} = V_{DDA}; V_{SDAB} = V_{SCLB} = V_{DDB};$	I _{DDA}		1.7	2.6	
	R1 = R2 = OPEN; C1 = C2 = OPEN	I _{DDB}		1.8	2.8	
4.5 V ≤ V _{DDA} , V _{DDB} ≤ 5.5V						
	$V_{SDAA} = V_{SCLA} = GNDA; V_{SDAB} = V_{SCLB} = GNDB;$	I _{DDA}		5.0	5.7	
CA-IS3020	R1 = R2 = OPEN; C1 = C2 = OPEN	I _{DDB}		4.7	5.2	
CA-133020	$V_{SDAA} = V_{SCLA} = V_{DDA}; V_{SDAB} = V_{SCLB} = V_{DDB};$	I _{DDA}		2.4	2.8	
	R1 = R2 = OPEN; C1 = C2 = OPEN	I _{DDB}		2.2	2.6	mA
	$V_{SDAA} = V_{SCLA} = GNDA; V_{SDAB} = V_{SCLB} = GNDB;$	I _{DDA}		3.0	4.5	IIIA
CA-IS3021	R1 = R2 = OPEN; C1 = C2 = OPEN	I _{DDB}		2.5	3.8	
CA-133021	$V_{SDAA} = V_{SCLA} = V_{DDA}$; $V_{SDAB} = V_{SCLB} = V_{DDB}$;	I _{DDA}		1.8	2.7	
	R1 = R2 = OPEN; C1 = C2 = OPEN	I _{DDB}		1.9	2.9	

7.10. Timing Requirements

		Minimum Value	Typical Value	Maximum Value	Unit
t_{SP}	Input noise filter	10	25		ns

7.11. Switching Characteristics

over recommended operating conditions, unless otherwise specified

	Parameters		Minimum Value	Typical Value	Maximum Value	Unit		
3 V ≤ (V _{DD}	a, V _{DDB}) ≤ 3.6 V				74.45			
t _{fA}	Fall Time(SDAA, SCLA)	See figure 8-1 R1 = 953Ω	A side input from 0.7xV _{DDA} to 0.3xV _{DDA} A side input from 0.9xV _{DDA} to	18	23	28		
		C1 = 40pF See figure 8-1	900mV B side input from 0.7xV _{DDB} to	32 12	16	20		
t _{fB}	Fall Time (SDAB, SCLB)	R2 = 95.3Ω C2 = 400pF	B side input from 0.9xV _{DDB} to 400mV		30	60		
t _{PLHA-B}	Propagation Delay, Side A to Side B		A side input = 0.55V to B side output = 0.7xV _{DDB}		100	135		
t phlab	Propagation Delay, Side A to Side B		A side input = 0.7V to B side output = 0.4V		100	130		
PWD _{AB}	Pulse Width Distortion	See figure 8-1 R1 = 953Ω	tphlab - tplhab		7	30	ns	
t _{PLHBA} 1	Propagation Delay, Side B to Side A	R2 = 95.3Ω C1 = C2 = 10pF	B side input = 0.4xV _{DDB} to A side output = 0.7xV _{DDA}		80	100		
t _{PHLBA} 1	Propagation Delay, Side B to Side A		B side input = 0.4xV _{DDB} to A side output = 0.9V		90	120		
PWD_{BA^1}	Pulse Width Distortion		tphlba - tplhba		5	20		
t _{loopa} 1	Loop propagation delay on Side A	See figure 8-2 R1 = 953Ω C1 = 40pF R2 = 95.3Ω C2 = 400pF	A side input = 0.4V to A side output = 0.3xV _{DDA}		200	220		
4.5 V ≤ (V ₁	_{DDA} , V _{DDB}) ≤ 5.5 V	.					•	
t _{fA}	Fall Time(SDAA, SCLA)	See figure 8-1 R1 = 1430Ω	A side input from 0.7xV _{DDA} to 0.3xV _{DDA}	10	12	14		
		C1 = 40pF	A side input from 0.9xV _{DDA} to 900mV	40	50	60		
to	Fall Time (SDAB, SCLB)	See figure8-1 R2 = 143Ω	- 1 1 1 8		10	12		
t _{fB}	Tall Tille (SDAD, SCLB)	C2 = 400pF	B side input from 0.9xV _{DDB} to 400mV	20	28	36		
t _{PLHAB}	Propagation Delay, Side A to Side B		A side input = 0.55V to B side output = 0.7xV _{DDB}		100	120		
t _{PHLAB}	Propagation Delay, Side A to Side B	See figure 8-1	A side input = 0.7V to B side output = 0.4V		70	90	ns	
PWD _{AB}	Pulse Width Distortion	R1 = 1430Ω	tphlab - tplhab		30	45		
t _{PLHBA} 1	Propagation delay, side B to side A	R2 = 143Ω C1 = C2 = 10pF	B side input = $0.4xV_{DDB}$ to A side output = $0.7xV_{DDA}$		110	130		
t _{PHLBA} 1	Propagation delay, Side B to side A		B side input = 0.4xV _{DDB} to A side output = 0.9V		100	150		
PWD _{BA} ¹	Pulse Width Distortion		t _{PHLBA} - t _{PLHBA}		8	20		
CLOOPA Loop propagation delay on side A		See figure 8-2 R1 = 1430Ω C1 = 40pF R2 = 143Ω C2 = 400pF	A side input = 0.4V to A side output = 0.3xV _{DDA}		210	230		

8. Parameter Measurement Information

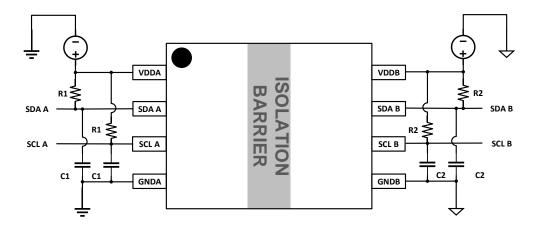


Figure. 8-1 Test Circuit

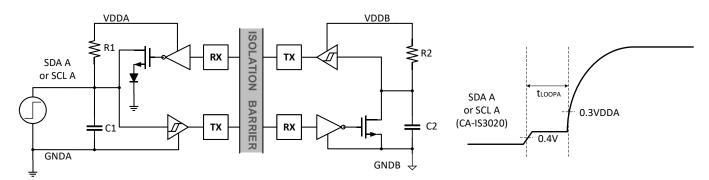


Figure. 8-2 t_{LOOPA} Test Circuit and Timing Diagram

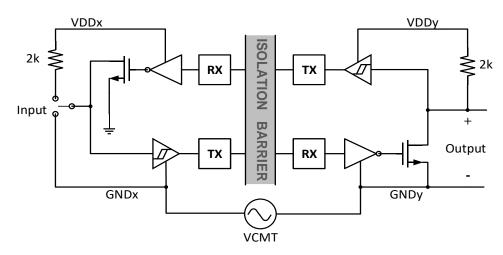


Figure. 8-3 Common-Mode Transient Immunity Test Circuit

Detailed Description

Overview 9.1.

The CA-IS302x family of devices is complete dual-channel, bidirectional galvanic digital isolators with up to 3.75kV_{RMS} (narrow-body package) or 5kV_{RMS} (wide-body package) isolation rating and ±150kV/µs typical CMTI. All devices have Schmitt trigger inputs for high noise immunity and each isolation channel has logic input and output buffer separated by capacitive silicon dioxide (SiO₂) insulation barrier. The CA-IS3020 offers two bidirectional, open-drain channels for applications, such as multi-master I²C, that require data and clock to be transmitted in both directions on the same line. The CA-IS3021 provides an isolated I²C compatible interface supporting master mode only, with a unidirectional clock (SCL), and bidirectional data (SDA). All devices can support up to 2.0MHz operating frequency and feature independent 3.0V to 5.5V supplies (V_{DDA} and V_{DDB}) on each side of the isolator to setup the logic levels independently on either side, see Table 9-1 for the CA-IS302x key features.

The CA-IS302x family are specified over the -55°C to +125°C operating temperature range. The wide temperature range and high isolation voltage make the devices ideal for use in harsh industrial environments.

lable. 9-1 key Features										
PART NUMBER	CHANNEL DIRECTION	RATED ISOLATION ¹	MAXIMUM FREQUENCY							
CA-IS3020	Bidirectional(SCL)									
CA-153020	Bidirectional(SDA)	Narrow-body package: 3750V _{RMS} , 5300 V _{PK}	2.0MHz							
CA-IS3021	Unidirectional(SCL)	Wide-body package: 5000V _{RMS} , 7071 V _{PK}	Z.UVITZ							
CA-153021	Bidirectional(SDA)									

1 For more details, please see the Insulation Specifications table.

Note:

9.2. **Functional Block Diagrams**

Compared with inductive isolation, the CA-IS302x devices based on capacitive isolation can get low power at high frequency operation, reduces propagation delay and jitter, and provide good immunity to magnetic fields. See Figure 9-1 and Figure 9-2 the CA-IS302x function block diagram for more details. To build the bidirectional signal path, the CA-IS302x integrated two unidirectional isolated signal lines for each bidirectional line. All of output channels provide open-drain output to comply with the standard I²C interface. Side A is designed to connect to the low capacitance I²C node with up to 40pF of load capacitance, while side B is designed for connecting to a fully loaded I²C bus with up to 400 pF of load capacitance.

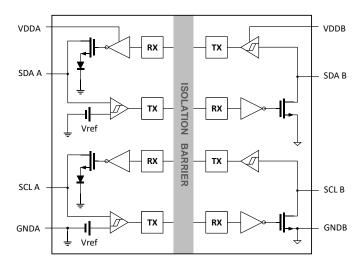


Figure. 9-1 The CA-IS3020 Block Diagram

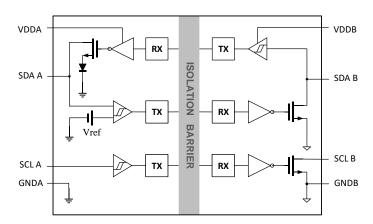


Figure. 9-2 The CA-IS3021 Block Diagram

9.3. Device Operation Modes

Table 9-2 lists the CA-IS302x functional modes. For optimal performance, ensure that the load capacitance on side A (C_A) is \leq 40pF, and the load capacitance on side B (C_B) is \leq 400pF. The maximum static output loading on side A is 3.5mA, while on side B, the maximum static output current is 35mA. For the bidirectional isolation channels, to prevent latch-up action, the A-side outputs comprise special buffers that regulate the logic-low voltage at approximately 700mV, and the maximum input logic-low voltage is 400mV. The internal comparator with hysteresis determines whether the logic-low level comes from the input or output based on the logic-low voltages at SDAA and SCLA pins. This prevents an output logic-low on side A from being accepted as an input low and subsequently transmitted to side B; thus preventing a latching action. The B side features conventional buffers that do not regulate logic-low output voltage. A logic-low on one side causes the corresponding pin on the other side to be pulled low while avoiding data latching within the device.

Table. 9-1 Truth Table¹

POWER STATE	INPUT	OUTPUT
V _{DDA} or V _{DDB} < 1.95V	X	Hi-Z
V _{DDA} and V _{DDB} > 2.53V	L	L
V _{DDA} and V _{DDB} > 2.53V	Н	Hi-Z
V _{DDA} and V _{DDB} > 2.53V	Hi-Z ²	Indeterminate

Notes:

- 1. X = don't care; H = high level; L = low level; Hi-Z = high impedance.
- Invalid input condition as an I²C system requires that a pull-up resistor to VDD is connected on the bus.

10. Application Information

10.1. I²C bus

The Inter IC (I²C) bus was developed by Philips Semiconductor in the early 1980s to simplify electronic products by reducing the number of parallel data lines. It is a simple, 2-wire, bidirectional bus for communication between different ICs (system controller, remote sensor, actuator etc. circuitry). 2-wire interfaces use only a data line (SDA) and a clock line (SCL) and allow to connect multiple slaves on the same bus without needing chip-select signals. This design is possible because each slave has its own unique address. 2-wire interfaces transmit an acknowledge bit after a successful read has been completed. Because 2-wire interfaces have only one data line, they can operate in half-duplex mode only, this means data can only be transmitted or received on a given cycle, but not both. Thus, the bus has two roles for nodes: master and addressable slave. This use of one or two fewer lines is a particularly useful advantage for the compact system designs and makes the I²C bus is currently the industry's most widely used serial bus. The CA-IS302x family of digital isolators is ideal for use in I²C bus to provide the required isolation between different ground potentials of the system circuitry to prevent ground loop currents that otherwise may falsify the acquired data.

The I^2C bus can operate in Standard mode, Fast mode, or High-speed mode, with maximum data rates of 100kbps (Standard mode), 400kbps (Fast mode), 1.7Mbps (High-speed mode with C_{bus} = 400pF). The CA-IS302x digital isolators can support up to 2.0MHz operating frequency, thus can support most of I^2C communication bus.

10.2. Typical Application

The CA-IS302x isolation ICs provide complete galvanic isolation between two power domains, protecting circuits from high common-mode transients and faults, eliminating ground loops. These devices do not require special power-supply sequencing, the logic levels are set independently on either side by V_{DDA} and V_{DDB} . The V_{DDA} and V_{DDB} supplies are both internally monitored for undervoltage conditions with 1.95V minimum threshold and 2.53V maximum threshold. Undervoltage events can occur during power-up, power-down, or during normal operation due to a sagging supply voltage. When an undervoltage event is detected on either of the supplies ($V_{DDA} \le 1.95V$) or $V_{DDB} \le 1.95V$), all bidirectional outputs become high-impedance and are pulled high by the external pullup resistor on the open-drain outputs.

The SDAA, SCLA, SDAB, SCLB pins have open-drain outputs, requiring pullup resistors to their respective supplies for logic-high outputs. The output low voltages are guaranteed for sink currents of up to 35mA for side B, and 3.5mA for side A. So the minimum pullup resistors on the input lines must be selected in such a way that input current drawn is \leq 3.5mA on side A and output current drawn is \leq 35mA on side B. The maximum pullup resistors on the input lines and output lines depend on the load and rise time requirements on the respective lines.

To reduce ripple and the chance of introducing data errors, bypass V_{DDA} and V_{DDB} with at least $0.1\mu F$ low-ESR ceramic capacitors to GNDA and GNDB respectively. Place the bypass capacitors as close to the power supply input pins as possible. Figure 10-1 and Figure 10-2 show typical operating circuit of the CA-IS3020 and CA-IS3022.

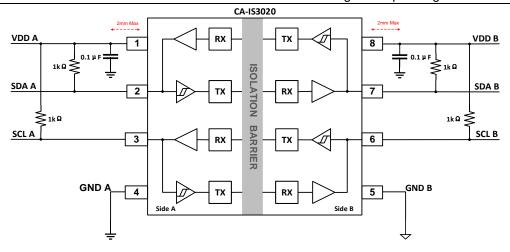
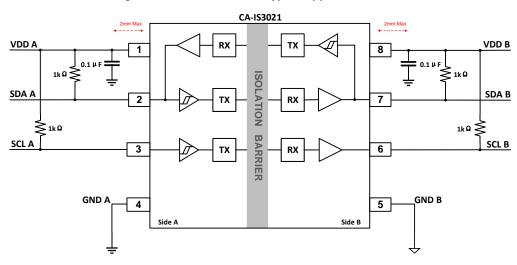
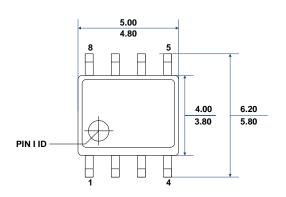
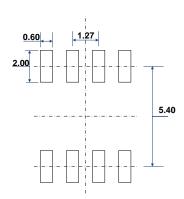


Figure. 10-1 The CA-IS3020 typical application circuit

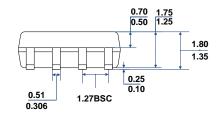


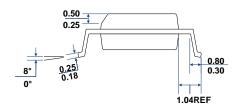

Figure. 10-2 The CA-IS3021 typical application circuit



11. Package Information

11.1. 8-Pin Narrow Body SOIC Package


The following diagrams provide the package details and the recommended land pattern details for the CA-IS302x digital isolator in 8-pin narrow body SOIC package. All values for the dimensions are shown in millimeters.

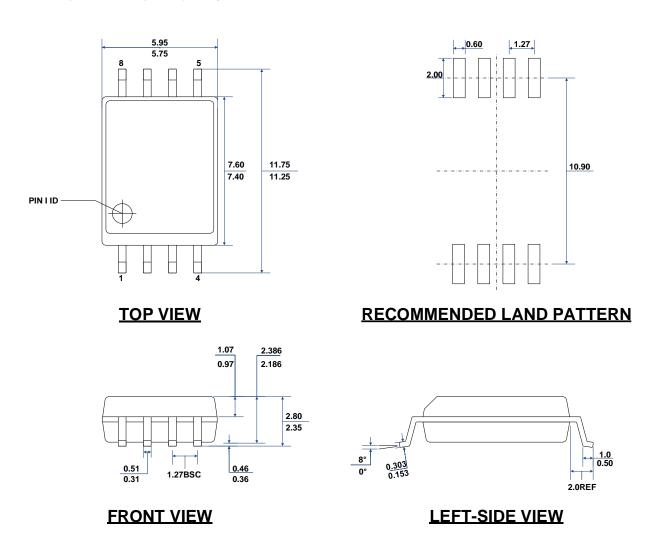


TOP VIEW

RECOMMENDED LAND PATTERN

FRONT VIEW

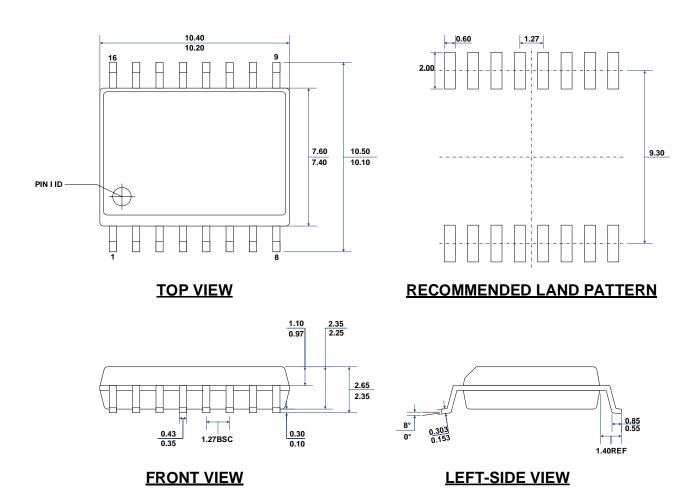
LEFT-SIDE VIEW


Note:

1. All dimensions are in millimeters, angles are in degrees.

11.2. 8-Pin Wide Body SOIC Package Outline

The following diagrams provide the package details and the recommended land pattern details for the CA-IS302x digital isolator in 8-pin wide body SOIC package. All values for the dimensions are shown in millimeters.


Note:

1. All dimensions are in millimeters, angles are in degrees.

11.3. 16-Pin Wide Body SOIC Package Outline

The following diagrams provide the package details and the recommended land pattern details for the CA-IS302x digital isolator in 16-pin wide body SOIC package. All values for the dimensions are shown in millimeters.

Note:

1. All dimensions are in millimeters, angles are in degrees.

12. Soldering Temperature (reflow) Profile

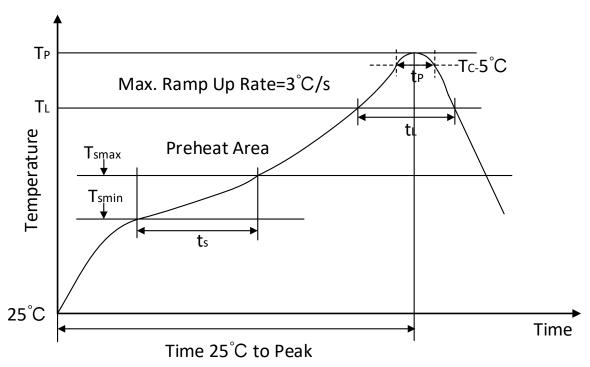
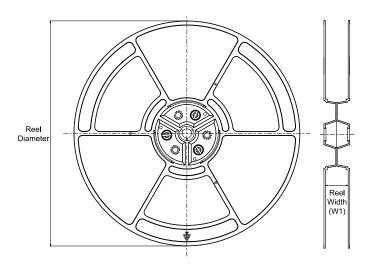
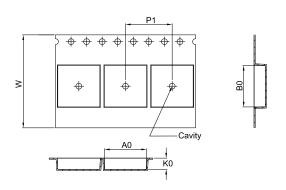


Figure. 12-1 Soldering Temperature (reflow) Profile

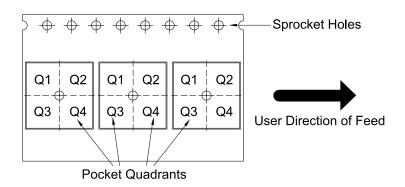

Table 12-1 Soldering Temperature Parameter

Profile Feature	Pb-Free Assembly
Average ramp-up rate(217 °C to Peak)	3°C/second max
Time of Preheat temp(from 150 °C to 200 °C	60-120 second
Time to be maintained above 217 °C	60-150 second
Peak temperature	260 +5/-0 °C
Time within 5 °Cof actual peak temp	30 second
Ramp-down rate	6 °C/second max.
Time from 25°C to peak temp	8 minutes max



13. Tape and Reel Information

REEL DIMENSIONS



TAPE DIMENSIONS

Α0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	KO (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS3020S	SOIC	S	8	2500	330	12.4	6.5	5.4	2.1	8.0	12.0	Q1
CA-IS3020G	SOIC	G	8	1000	330	16.4	12.05	6.15	3.3	16.0	16.0	Q1
CA-IS3021S	SOIC	S	8	2500	330	12.4	6.5	5.4	2.1	8.0	12.0	Q1
CA-IS3021G	SOIC	G	8	1000	330	16.4	12.05	6.15	3.3	16.0	16.0	Q1
CA-IS3020W	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3021W	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1

14. Important statement

The above information is for reference only and used for helping Chipanalog customers with design, research and development. Chipanalog reserves the rights to change the above information due to technological innovation without advance notice.

All Chipanalog products pass ex-factory test. As for specific practical applications, customers need to be responsible for evaluating and determining whether the products are applicable or not by themselves. Chipanalog's authorization for customers to use the resources are only limited to development of the related applications of the Chipanalog products. In addition to this, the resources cannot be copied or shown, and Chipanalog is not responsible for any claims, compensations, costs, losses, liabilities and the like arising from the use of the resources.

Trademark information

Chipanalog Inc.® and Chipanalog® are registered trademarks of Chipanalog.

http://www.chipanalog.com