DLC70A (.055" x .055")

◆ Product Features

High Q, High Power, Low ESR/ESL, Low Noise, High Self-Resonance, Ultra-Stable Performance.

◆Product applications

Typical Functional Applications: Tuning, Bypass, Coupling, Feedback, D.C. Blocking and Impedance Matching.

Typical Circuit Applications: UHF/Microwave RF Power Amplifiers, Mixers, Oscillators, Low Noise Amplifiers, Filter Networks, Timing Circuits and Delay Lines.

◆ DLC70A Capacitance Table

Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC
Cap.pF 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2	Ode OR1 OR2 OR3 OR4 OR5 OR6 OR7 OR8 OR9 1R0 1R1 1R2	Tol. A, B, C, D	150V Code 151 or 300V	Cap.pF 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8	Code 2R4 2R7 3R0 3R3 3R6 3R9 4R3 4R7 5R1 5R6 6R2 6R8	A, B, C, D		Cap.pF 20 22 24 27 30 33 36 39 43 47 51 56	200 220 240 270 300 330 360 390 430 470 510	F, G, J		Cap.pF 160 180 200 220 240 270 300 330 360 390 430 470	Code 161 181 201 221 241 271 301 331 361 391 431 471	F, G, J	WVDC 150V Code 151 or 200V Code 201 150V Code
1.2 1.3 1.4 1.5	1R3 1R4 1R5	D	Code 301	7.5 8.2 9.1	7R5 8R2 9R1	В, С, Ј	Code 301	62 68 75	620 680 750		150V Code 151	510 560 620	511 561 621		151
1.6 1.7 1.8 1.9 2.0	1R6 1R7 1R8 1R9 2R0			10 11 12 13 15	100 110 120 130 150	F, G, J		82 91 100 110 120	820 910 101 111 121		or 200V Code 201	680 750 820 910 1000	681 751 821 911 102		50V Code 500 or 100V Code 101
2.1	2R1 2R2			16 18	160 180			130 150	131 151						

Remark: special capacitance, tolerance and WVDC are available, consult with DALICAP.

◆ Part Numbering

Code	A	В	C	D	F	G	J
Tolerance	$\pm0.05 \mathrm{pF}$	$\pm 0.1 \mathrm{pF}$	$\pm0.25 \mathrm{pF}$	$\pm 0.5 \mathrm{pF}$	±1%	± 2%	± 5%

Note: Tolerance of $\pm\,0.02 pF$ is a possibility. Please contact Dalicap

♦ DLC70A Capacitor Dimensions

unit:inch(millimeter)

	Т			Capacitor	Plated		
Series	Term. Code	Type / Outlines	Length (Lc)	Width (Wc)	Thickness (Tc)	Overlap (B)	Material
	W		.055	.055			100% Sn Solder over Nickel Plating
DLC70A	L	Chip	+.015~ 010 (1.40+	$\pm .010$ (1.40 ± 0.25)	.057 (1.45) max	.020 (0.51) max	90 Sn10Pb Solder over Nickel Plating
DLC70A	P (Non-Mag)	The Chip (Non-Mag)	0.38~ -0.25)				100% Sn Solder over Copper Plating

Note: Non-Mag is no magnetism.

♦ Performance

Item	Specifications
Quality Factor (Q)	greater than 10,000 at 1 MHz
Insulation Resistance (IR)	10 ⁵ Megohms min. @ +25°C at rated WVDC. 10 ⁴ Megohms min. @ +125°C at rated WVDC.
Rated Voltage	See Rated Voltage Table
Dielectric Withstanding Voltage (DWV)	250% of Rated Voltage for 5 seconds.
Operating Temperature Range	-55°C to +200°C
Temperature Coefficient (TC)	$0 \pm 30 \text{ ppm/}^{\circ} \text{C} (-55 ^{\circ} \text{C to } +175 ^{\circ} \text{C})$
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.
Piezoelectric Effects	None
Termination Type	See Termination Type Table

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

◆Environmental Tests

Item	Specifications	Method
Thermal Shock Moisture Resistance	DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change: no more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature(-55°C and 200°C) stay 30 minutes. The time of removing shall not be more than 3 minutes. Perform the five cycles. MIL-STD-202, Method 106.
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF, whichever is greater.	MIL-STD-202, Method 108, for 2000 hours, at 200°C. 200% Rated voltage D.C. applies

◆DLC70A Performance Curve

ESR vs Capacitance

Q vs Capacitance

ESR vs Capacitance

Q vs Capacitance

DLC70A Horizontal First Series Resonance(FSRs)

Definitions and Measurement Conditions

For a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace, with 50-Ohm source and termination resistances, the First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, $\operatorname{Im}[\operatorname{Zin}]$, equals zero when reference planes are at the sample edges. The FSR shall be considered as undefined (gap in plot above) if, over the measured or model-validated frequency range: (a) $\operatorname{Im}[\operatorname{Zin}]$ never reaches zero; or, (b) at frequencies lower than that at which $\operatorname{Im}[\operatorname{Zin}] = 0$, $\operatorname{Im}[\operatorname{Zin}]$ is not monotonic with frequency and/or the real part of the input impedance, $\operatorname{Re}[\operatorname{Zin}]$, deviates more than once from montonicity.

FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined above; and mounting pad dimensions. The measurement conditions are: substrate -- Rogers RO4350; substrate dielectric constant = 3.66; horizontal mount substrate thickness (mils) = 25; gap in microstrip trace (mils) = 15; horizontal mount microstrip trace width (mils) = 55. Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by Dalicap. The models are derived from measurements on a large number of parts disposed on several different substrates.

◆ DLC70A Performance Curve

DLC70A Horizontal First Parallel Resonance(FPRs)

Current Rating vs Capacitance

The current depends on voltage limited:

$$I = \frac{\sqrt{2}}{2} I_{peak} = \frac{\sqrt{2}}{2} \times \frac{V_{\textit{rated}}}{X_{\textit{C}}} = \sqrt{2} \, \pi \textit{TFCV}_{\textit{rated}}$$

The current depends on power dissipation limited: $I = \sqrt{\frac{P_{dissipation}}{FSR}}$

Definitions and Measurement conditions:

For a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace, with 50-Ohm source and termination resistances, the First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; a vertical orientation means the electrode planes are perpendicular to the substrate.

The measurement conditions are: substrate -- Rogers RO4350; substrate dielectric constant = 3.66; horizontal mount substrate thickness (mils) = 25; gap in microstrip trace (mils) = 15; horizontal mount microstrip trace width (mils) = 55. Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by Dalicap. The models are derived from measurements on a large number of parts disposed on several different substrates.

Current Rating vs Capacitance

Note: If the thermal resistance of mounting surface is 40°C/W .

then a power dissipation of 1.5 W will result in the current limited

we can calculate the current limited: $I = \sqrt{\frac{P_{dissipation}}{ESR}}$

◆Tape & Reel Specifications

Orientation	EIA	A0	В0	K0	W	P0	P1	Т	F	Qty/reel	Tape Material
Horizontal	0505	1.38	1.68	0.98	8.00	4.00	4.00	0.22	3.50	3000	Plastic
Vertical	0505	1.10	1.60	1.40	12.00	4.00	4.00	0.30	5.50	2000	Plastic

♦ Design Kits

These capacitors are 100% RoHS. Kits are available in Magnetic and Non-Magnetic that contain 10(ten) pieces per value;16 values per kit.

Design Kit	Description (pF)	Values (pF)	Tolerance
DKDLC70A01	0.1 - 2.0	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5,	± 0.10pF
		1.6, 1.8, 2.0	± 0.25pF
		1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7,	± 0.10pF
DKDLC70A02	1.0 - 10	3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2	± 0.25pF
		10	± 5%
DKDLC70A03	10 - 100	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100	± 5%
DKDLC70A04	100 - 1000	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820, 1000	±5%
DKDLC70A05	0.1 - 2.0 Non-magnetic	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5,	± 0.10pF
	T ton magnetic	1.6, 1.8, 2.0	± 0.25pF
	1.0.10	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7,	± 0.10pF
DKDLC70A06	1.0 - 10 Non-magnetic	3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2	± 0.25pF
	1 von-magnetie	10	± 5%
DKDLC70A07	10 - 100 Non-magnetic	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100	± 5%
DKDLC70A08	100 - 1000 Non-magnetic	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820, 1000	±5%

