

TX-1310/RX-1550 nm Single-mode Bi-directional (26dB margin) SFP LC Simplex Connector, with Diagnostic Monitoring 155 Mbps SONET OC-3/SDH STM-1/125 Mbps Fast Ethernet/ 100Base-BX10-U/ITU-TG-985

Features

- SONET/SDH application
- Fast Ethernet application
- Industry standard small form pluggable (SFP) package
- Simplex LC connector

Website: www.apacoe.com.tw

- Differential inputs and outputs
- Single power supply 3.3V
- TTL signal detect indicator
- Hot Pluggable
- Class 1 laser product complies with EN 60825-1

Ordering Information

PART NUMBER	TX/RX	TEMPERATURE	LD Type	Distance
LS38-A3L-TC-N-D3	1310/1550	0° C to 70° C	1310 FP	40km
LS38-A3L-TI-N-D3	1310/1550	-40° C to 85 $^{\circ}$ C	1310 FP	40km

Diagnostics

Parameter	Range	Accuracy	Unit	Calibration	
Temperature	-40 to 95	± 3	°C		
Voltage	3.0 to 3.6	± 0.1	V		
Bias Current	0 to 100	± 10%	mA	External	
TX Power	-11 to +3	± 3 dB	dBm		
RX Power	-31 to -8	± 3 dB	dBm		

TX-1310/RX-1550 nm Single-mode Bi-directional (26dB margin) SFP LC Simplex Connector, with Diagnostic Monitoring 155 Mbps SONET OC-3/SDH STM-1/125 Mbps Fast Ethernet/100Base-BX10-U/ITU-TG.985

Absolute Maximum Ratings

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTE
Storage Temperature	T_S	-40	85	°C	
Supply Voltage	Vcc	-0.5	4.0	V	
Input Voltage	V_{IN}	-0.5	Vcc	V	

Recommended Operating Conditions

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTE
	T_C	0	70	°C	LS38-A3L-TC-N-D3
Case Operating Temperature		-40	85	$^{\circ}C$	LS38-A3L-TI-N-D3
Supply Voltage	Vcc	3.1	3.5	V	
Supply Current	$I_{TX} + I_{RX}$		220	mA	

TX-1310/RX-1550 nm Single-mode Bi-directional (26dB margin) SFP LC Simplex Connector, with Diagnostic Monitoring 155 Mbps SONET OC-3/SDH STM-1/125 Mbps Fast Ethernet/ 100Base-BX10-U/ITU-TG.985

Transmitter Electro-optical Characteristics

 $Vcc = 3.1 \text{ V to } 3.5 \text{ V}, T_{\text{C}} = 0 \,^{\circ}\text{C to } 70 \,^{\circ}\text{C } (-40 \,^{\circ}\text{C to } 85 \,^{\circ}\text{C})$

PARAMETER	SYMBOL	MIN	TYP.	MAX	UNITS	NOTE
Output Optical Power 9/125 μ m fiber	P_{out}	-8		0	dBm	Average
Extinction Ratio	ER	9			dB	
Center Wavelength	λ_C	1261	1310	1360	nm	
Spectral Width (RMS)	$\Delta \lambda$			2.5	nm	
Rise/Fall Time (10–90%)	$T_{r,f}$		1	2	ns	
Output Eye	Compliant with	h Telcord	ia GR-253-C0	ORE Issue 3	and ITU-T re	commendation G-957
Max. Pout TX-DISABLE Asserted	P_{OFF}			-45	dBm	
Differential Input Voltage	V_{DIFF}	0.4		2.0	V	
Transmit Fault Output-Low	TX_FAULT_L	0.0		0.5	V	
Transmit Fault Output-High	TX_FAULT_H	2.4		V_{CC}	V	
Time to initialize, include reset of TX_FAULT	t_init			300	ms	
TX_FAULT from fault to assertion	t_fault			100	μs	
TX_DISABLE time to start reset	t_reset	10			μs	

Website: www.apacoe.com.tw

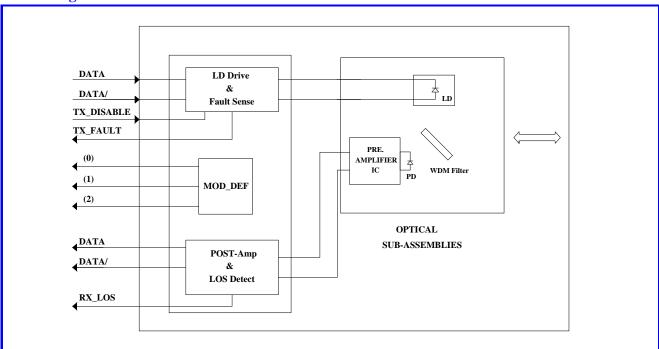
Page 3 of 10 Version 2.1 Date:4/16/2013

TX-1310/RX-1550 nm Single-mode Bi-directional (26dB margin) SFP LC Simplex Connector, with Diagnostic Monitoring 155 Mbps SONET OC-3/SDH STM-1/125 Mbps Fast Ethernet/ 100Base-BX10-U/ITU-TG.985

Receiver Electro-optical Characteristics

 $Vcc = 3.1 \text{ V to } 3.5 \text{ V}, T_C = 0 ^{\circ}\text{C to } 70 ^{\circ}\text{C } (-40 ^{\circ}\text{C to } 85 ^{\circ}\text{C})$

$VCC = 3.1 \text{ V to } 3.5 \text{ V, } \Gamma_{C} = 0 \text{ C to } 70 \text{ C } (-40 \text{ C to } 85 \text{ C})$						
SYMBOL	MIN	TYP.	MAX	UNITS	NOTE	
P_{IN}	0			dBm	$BER < 10^{-10}$	
P_{IN}			-34	dBm	PRBS23, BER $< 10^{-10}$	
P_{IN}			-34	dBm	PRBS7, BER $< 10^{-10}$	
λ_C	1480		1600	nm		
ORL	14			dB	λ=1480~1600nm	
ISO			-45	dB	λ=1260~1360nm	
P_D			-34	dBm		
P_A	-45			dBm		
V_{DIFF}	0.5		1.2	V		
RX_LOS_L	0		0.5	V		
RX_LOS_H	2.4		V_{CC}	V		
	$\begin{array}{c} \text{SYMBOL} \\ P_{IN} \\ P_{IN} \\ P_{IN} \\ \lambda_C \\ ORL \\ \text{ISO} \\ P_D \\ P_A \\ V_{DIFF} \\ RX_LOS_L \\ \end{array}$	SYMBOL MIN P_{IN} 0 P_{IN} P_{IN} A_C 1480 ORL 14 ISO P_D P_A -45 V_{DIFF} 0.5 RX_LOS_L 0	SYMBOL MIN TYP. P_{IN} 0 P_{IN} P_{IN} λ_C 1480 ORL 14 ISO P_D P_A -45 V_{DIFF} 0.5 RX_LOS_L 0	SYMBOL MIN TYP. MAX P_{IN} 0 P_{IN} -34 P_{IN} -34 λ_C 1480 1600 ORL 14 ISO -45 P_D -34 P_A -45 V_{DIFF} 0.5 1.2 RX_LOS_L 0 0.5	SYMBOL MIN TYP. MAX UNITS P_{IN} 0 dBm P_{IN} -34 dBm P_{IN} -34 dBm A_C 1480 1600 nm ORL 14 dB ISO -45 dB P_D -34 dBm P_A -45 dBm V_{DIFF} 0.5 1.2 V RX_LOS_L 0 0.5 V	


Website: www.apacoe.com.tw

Page 4 of 10 Version 2.1 Date:4/16/2013

TX-1310/RX-1550 nm Single-mode Bi-directional (26dB margin) SFP LC Simplex Connector, with Diagnostic Monitoring 155 Mbps SONET OC-3/SDH STM-1/125 Mbps Fast Ethernet/ 100Base-BX10-U/ITU-TG-985

Block Diagram of Transceiver

Transmitter and Receiver Optical Sub-assembly Section

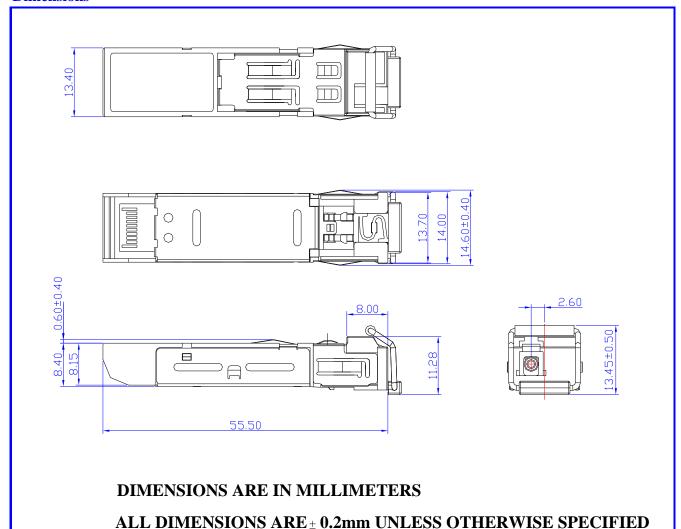
A 1310 nm InGaAsP laser and an InGaAs PIN photodiode integrate with an WDM filter to form a bi-directional single fiber optical subassembly (OSA). The laser of OSA is driven by a LD driver IC which converts differential input LVPECL logic signals into an analog laser driving current. And, The photodiode of OSA is connected to a circuit providing post-amplification quantization, and optical signal detection.

TX_FAULT

When sensing an improper power level in the laser driver, the SFP set this signal high and turns off the Laser. TX_FAULT can be reset with the TX_DISABLE line. The signal is in TTL level.

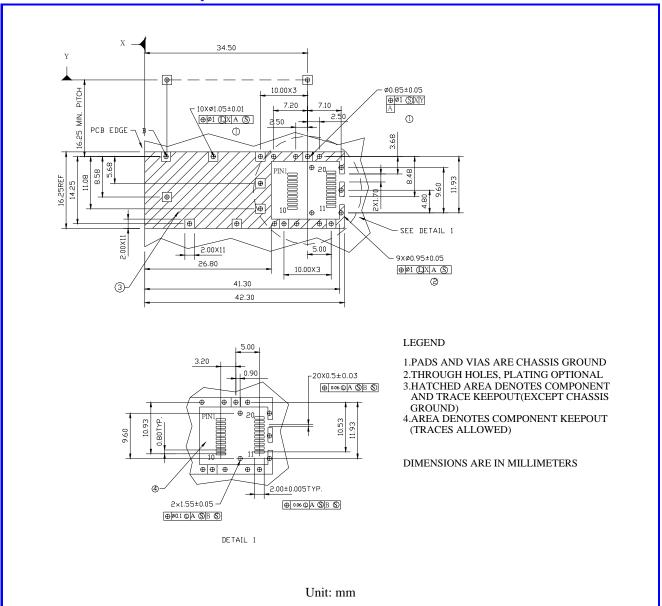
TX DISABLE

The TX DISABLE signal is high (TTL logic "1") to turn off the laser output.


Receive Loss (RX_LOS)

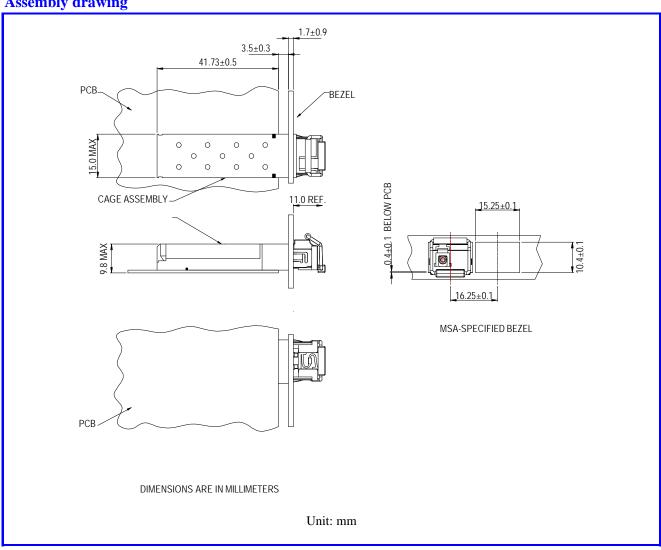
The RX_LOS is high (logic "1") when there is no incoming light from the companion transceiver. This signal is normally used by the system for the diagnostic purpose. The signal is operated in TTL level.

TX-1310/RX-1550 nm Single-mode Bi-directional (26dB margin) SFP LC Simplex Connector, with Diagnostic Monitoring 155 Mbps SONET OC-3/SDH STM-1/125 Mbps Fast Ethernet/ 100Base-BX10-U/ITU-TG.985


Dimensions

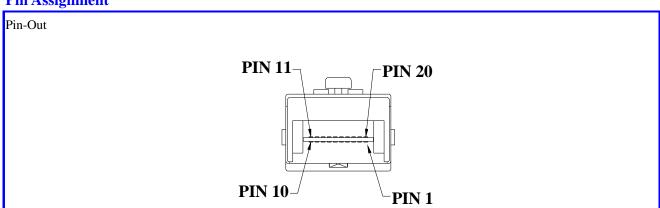
TX-1310/RX-1550 nm Single-mode Bi-directional (26dB margin) SFP LC Simplex Connector, with Diagnostic Monitoring 155 Mbps SONET OC-3/SDH STM-1/125 Mbps Fast Ethernet/ 100Base-BX10-U/ITU-TG-985

SFP host board mechanical layout



RoHS Compliant TX-1310/RX-1550 nm Single-mode Bi-directional (26dB margin) SFP LC Simplex Connector, with Diagnostic Monitoring

155 Mbps SONET OC-3/SDH STM-1/125 Mbps Fast Ethernet/ 100Base-BX10-U/ITU-TG.985


Assembly drawing

TX-1310/RX-1550 nm Single-mode Bi-directional (26dB margin) SFP LC Simplex Connector, with Diagnostic Monitoring 155 Mbps SONET OC-3/SDH STM-1/125 Mbps Fast Ethernet/ 100Base-BX10-U/ITU-TG.985

Pin Assignment

Pin	Signal Name	Description
1	T_{GND}	Transmit Ground
2	TX_FAULT	Transmit Fault
3	TX_DISABLE	Transmit Disable
4	$MOD_DEF(2)$	SDA Serial Data Signal
5	$MOD_DEF\left(1\right)$	SCL Serial Clock Signal
6	$MOD_DEF\left(0\right)$	TTL Low
7	RATE SELECT	Open Circuit
8	RX_LOS	Receiver Loss of Signal, TTL High, open collector
9	R_{GND}	Receiver Ground
10	R_{GND}	Receiver Ground
11	R_{GND}	Receiver Ground
12	RX-	Receive Data Bar, Differential PECL, ac coupled
13	RX+	Receive Data, Differential PECL, ac coupled
14	R_{GND}	Receiver Ground
15	V_{CCR}	Receiver Power Supply
16	V_{CCT}	Transmitter Power Supply
17	T_{GND}	Transmitter Ground
18	TX+	Transmit Data, Differential PCEL, ac coupled
19	TX-	Transmit Data Bar, Differential PCEL, ac coupled
20	T_{GND}	Transmitter Ground

TX-1310/RX-1550 nm Single-mode Bi-directional (26dB margin) SFP LC Simplex Connector, with Diagnostic Monitoring 155 Mbps SONET OC-3/SDH STM-1/125 Mbps Fast Ethernet/ 100Base-BX10-U/ITU-TG-985

Eye Safety Mark

The LS3 series singlemode transceiver is a class 1 laser product. It complies with EN 60825-1 and FDA 21 CFR 1040.10 and 1040.11. In order to meet laser safety requirements the transceiver shall be operated within the Absolute Maximum Ratings.

Caution

All adjustments have been done at the factory before the shipment of the devices. No maintenance and user serviceable part is required. Tampering with and modifying the performance of the device will result in voided product warranty.

Required Mark

Class 1 Laser Product Complies with 21 CFR 1040.10 and 1040.11

Website: www.apacoe.com.tw

Note: All information contained in this document is subject to change without notice.